Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы теории удара

Элементы теории удар.э.  [c.289]

Глава 9. ЭЛЕМЕНТЫ ТЕОРИИ УДАРА 1. ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ УДАРА  [c.126]

ЭЛЕМЕНТЫ ТЕОРИИ УДАРА И ДИНАМИКИ ТОЧКИ ПЕРЕМЕННОЙ МАССЫ  [c.409]

ЭЛЕМЕНТЫ ТЕОРИИ УДАРА АКТИВНОГО КАТКОВОГО КОПИРА  [c.83]

В томе III содержится отдел курса, посвященный динамике й теории устойчивости деформируемых систем. Даны некоторые элементы аналитической механики. Рассматриваются малые колебания систем с конечным и бесконечным числом степеней свободы. Приводятся краткие сведения о нелинейных колебаниях. Излагается теория удара. Теория устойчивости равновесия деформируемых систем излагается с использованием аппарата динамики.  [c.2]


В теории удара, относящейся к этому классу задач, распределенные по объему инерционные свойства в расчетных моделях в ряде случаев подвергаются дискретизации. При этом обычно дискретизируют и реологические, в частности упругие, свойства — всю расчетную модель составляют из чередующихся элементов, одни из которых несут в себе инерционные свойства,  [c.254]

Реология (с включением вопросов, ранее входивших в п. 11). 2. Теория оптимизации конструкций. 3. Элементы теории роботов. 4. Основы теории автоматического управления. 5. Проблемы устойчивости равновесия и движения. 6. Удар и волны. 7. Приближенные методы матема-  [c.63]

В простейшей теории поперечного удара по стержню постоянного поперечного сечения предполагается, что движение каждого элемента стержня представляет собой чистый перенос его в направлении, перпендикулярном оси стержня. Силы, действующие на элемент стержня 1х, который изгибается в плоскости хОг, показаны па рис. 77. Изгибающий момент У14 изменяется вдоль стержня и должен уравновешиваться поперечными силами Q, действующими параллельно оси Ог. Вычисляя моменты относительно оси Оу, получим  [c.245]

В этих двух томах рассмотрены одиннадцать основных вопросов 1) основы теории упругости анизотропного тела 2) критерии разрушения и анализ разрушения элементов из композиционных материалов 3) расчет ферм, балок, рам и тонкостенных элементов 4) расчет пластин 5) расчет оболочек 6) распространение волн и удар 7) анализ конструкций из композиционных материа-лов методом конечных элементов 8) вероятностный расчет и на-дежность 9) экспериментальные характеристики композиционных материалов 10) анализ напряжений в окрестностях концентраторов напряжений, кромок и узлов соединений 11) проектирование элементов конструкций из композиционных материалов.  [c.9]

Если у свободного твердого тела, находящегося в каком-нибудь движении, внезапно остановить одну точку О, то последующее движение может быть только вращением вокруг О, так что скорости отдельных точек должны, вообще говоря, испытать резкие изменения. С точки зрения теории движения под действием мгновенных сил важно представлять явление, как происходящее от одного-единственного импульса, приложенного в точке О. Прямой способ для определения угловых скоростей после удара будет состоять в приравнивании результирующих моментов количеств движения до удара и после удара, взятых относительно точки О. Предоставляя читателю идти этим путем, укажем здесь другой путь, который, может быть, более удобен, когда представляет интерес определить также и импульс I, а с другой стороны, желательно ввести только характеристики, относящиеся к центру тяжести (массу и кинематические характеристики). Если мы введем этот неизвестный импульс / в виде вспомогательного элемента, то легко видеть, что состояние движения после удара можно определить, присоединяя к основным уравнениям кинематическое условие, что скорость точки О после удара равна нулю, и применяя при этом обозначения п. 8 мы будем иметь тогда  [c.520]


В сборник моих статей по прочности и колебаниям элементов конструкций включены двадцать шесть работ они посвящены изучению деформированного и напряженного состояния стержневых систем (рамы, рельсы, мосты), тонких упругих пластин и оболочек, анализу изгиба и кручения призматических стержней, плоской задаче теории упругости и общим проблемам прочности Кроме того, приведены статьи о колебаниях стержневых систем и об ударе по упругой балке.  [c.9]

До последнего времени в учебный план ФПК входили следующие курсы 1. Социальные и методологические проблемы современной науки (34 ч.). 2. Основы педагогики высшей школы (68 ч.). 3. Решение инженерных задач на ЭВМ (68 ч.). 4. Основы линейной алгебры и теории матриц (34 ч). 5. Дифференциальные уравнения (34 ч). 6. Общий курс теоретической механики и методика его преподавания (51 ч). 7. Теория механических колебаний и удара (68 ч). 8. Аналитическая механика и теория устойчивости движения (34 ч). 9. История механики (17 ч). 10. Динамика твердого и составного тела (34 ч). 11. Элементы механики сплошной среды (34 ч). 12. Научно-методическая работа на кафедре (34 ч).  [c.63]

ТЕОРИЯ УДАРА И ДИНАМИКА ТОЧКИ ПЕРЕМЕННОЙ МАССЫ (ГЛ. ХХ1П 1. Элементы теории удара  [c.410]

Книга включает в себя элементы теории скользящих векторов, геометрическую и аналитическую статику, динамику материальной точки и системы материальных точек, динамику твердого тела, аналитическую динамику, элементы теории удара и элементы специального принципа относительности Эйнштейна. В основу кинематики положено понятие сложного движения, базирующееся на теории скользящих векторов. В статике большое внимание уделено методу возможных перемещений. В динамике точки более подробно изучаются центральные движения и относительные движения. При изложении основных теорем динамики системы материальных точек автор следовал методам Н. Е. Жуковского и Н. Г. Че-таева, продолжавших идеи Лагранжа. Это направление проходит через весь курс и особенно подчеркивается при рассмотрении решений задач. В раздел аналитическая дина-  [c.7]

Элементы теории удара. Явление удара. Ударная сила и ударный импульс. Действие ударной силы иа материальную точку. Теорема об изменении количества движения механической с 1стемы при ударе. Прямой центральный удар тела о иенодвнжную поверхность угфугий 1 неупругий удары. Коэффициент восстановлен я при ударе и его опытное определе П е. Прямой центральный удар двух гел. Теорема Карно.  [c.10]

Расширена динаг.иша твердого тела с одной закрепленной точкой. Наряду с приближенной теорией гироскопа дополнительно изложена точная теория гироскопического момента при регулярной прецессии. В спецЕтальных главах изложены также элементы теории искусственных спутников и даны основные сведения по движению точки переменной Еиассы. В теорию удара вклЕочена редко излагаемая в учебниках теорема Кельвина, иа основе которой затем доказываются теоремы Карно.  [c.3]

Родионов А. И. К теории удара деформируемых тел, как элементов силовых импульсных систем // Вопр. автоматиз. произв. процессов с использ. сил. импульс, систем. Новосибирск, 1984. С. 75-79.  [c.387]

Теореютескую базу лабораторной работы составляют кинематика и динамика системы материальных точек, включая общие теоремы динамики, теорию удара, элементы теории колебаний системы с степенями свободы.  [c.52]

Кнапп в своем докладе на симпозиуме [Л. 94] и в [Л. 95], оставаясь в рамках механической теории эрозионного разрушения, приходит к выводу, что разрушения не связаны с усталостью материала, а вызваны малым числом весьма интенсивных ударов на данный элемент поверхности.  [c.58]


Вместе с тем представляется логически не обоснованным принятие значения ф>1. Действительно, с одной стороны, потеря удара вводится в предположении, что при несовпадении направления потока с направлением входной части лопасти теряется некоторая часть энергии, соответствующая скоростному напору, измеряемому составляющей удара . Естественно полагать, что если утрачивается некоторая скорость то больше чем (Aw) /2g энергии потерять нельзя. Однако оказывается, что это не так, а теряется большая величина известно, что ф может быть равно 2. Следовательно, введя значение ф>1, экспериментально дополняют рабочую гипотезу, согласно которой исчисление потерь ведут в единицах, кратных Aw l2g. Уже здесь, в этой коррекции, заложена попытка дать суммарный коэффициент потери напора, полагая за аргумент величину ударной составляющей скорости. Если развивать эту мысль дальше, то логично рассматривать вообще потери в круге циркуляции гидромуфты, Не подразделяя их на составляющие. Такое интегральное рассмотрение коэффициента потерь ближе всего (методологически) приближает теорию к эксперименту. При таком исчислении потерь теряется возможность использовать коэффициенты, применяемые для элементов неподвижных трубопроводов. Все же вводя такой критерий, можно в расчетах использовать опыт работы с гидромуфтами.  [c.276]

Рассмотрим применение метода статистических испытаний при исследовании случайных колебаний многомассовой системы (рис. 3.9) при движении по дороге со случайными неровностями (проведено А. И. Котовым и Ю. Ю. Олешко). Одним из возможных путей снижения ускорений и ударов, действующих на транспортируемые грузы, является вторичная амортизация, т. е. введение в систему груз — транспортное средство дополнительных упругих элементов и демпферов (амортизационных узлов). Основным внешним воздействием для наземных транспортных средств является кинематическое возмущение со стороны дороги, имеющее случайный характер (высота Н и длина волны дорожных неровностей X — случайные функции). В случае неустановившегося движения для решения задачи о выборе параметров вторичной амортизации нельзя использовать спектральную теорию под-рессоривания, так как требуется определить вероятность пробоя системы амортизации, что можно сделать только, зная законы распределения перемещений. Получить законы распределения выходных величин можно решением соответствующего данной многомерной задаче уравнения Колмогорова, что сделать для системы со многими степенями свободы очень сложно. Кроме того, при решении уравнения Колмогорова получается многомерный закон распределения вектора состояния системы, который менее удобен при решении ряда задач (определение вероятности достижения заданной границы и т. д.), чем одномерные законы распределения компонент вектора состояния, получаемые методом статистических испытаний.  [c.101]

ОСНОВНАЯ ТЕОРЕМА ЗАЦЕПЛЕНИЯ — положение теории зубчатого. зацепления, характеризующее взаимосвязь соотношения скоростей взаимодействующих звеньев и их геометрии. Получение определенного соотношения угловых скоростей звеньев (передаточного отношения) является одним ИЗ основных функциональных качеств зубчатой передачи. Чаще всего это соотношение должно быть постоянным, независимым от врёмени. Если это требование не выполняется, то колебания угловой скорости одного из колес вызывает динамические нагрузки в зацеплении, удары, вибрации элементов передачи и шум. Постоянство соотношения скоростей обеспечивается выбором формы колес и зубьев. Де формации элементов передачи и погрешности изготовления нарушают правильность зацепления и приводят к колебаниям угловой скорости колес.  [c.212]

Высокоэнергетические динамические и импульсные воздействия на элементы конструкций пз однородных н композиционных материалов приводят к сложным волновым явлениям. Они характеризуются диссипативными, дисперсионными процессами, взаимодействием упругоп.ластических и ударных волн в результате многократных отражении и преломлений на границах и поверхностях раздела сред, а также возможными процессами разрушения материала, компонентов композита или конструкции в целом. Исто-рпчески исследовательский интерес к этим вопросам связан с проблемой пробивания [38, 55] и моделированием реакций кон-струкцт на взрывные нагрузки [143]. Для решения этих задач разработаны как простые феноменологические модели [102, 115, 143], так и общие упругопластические и гидродинамические модели, физические представления об ударных волнах [62], теории динамических волновых процессов и удара, представленных в монографиях [29, 38, 48, 55, 68, 73, 108, 126, 144, 158] и ряде обзоров [76, 97, 98, 106, 175].  [c.26]

Успехи в решении проблем теории приспоеобляемоетй тесно связаны с развитием общей теории термопластичности (второе направление). Обзор достижений в этой области дан в работе П. Пэжины и А. Савчука (Польша). Излагая общую теорию упруговязкопластических материалов, авторы основываются на теории сред с внутренними изменениями состояния, используя термодинамические представления, а также экспериментальные дйнные. Наряду со связанной рассматривается и упрощенная несвязанная теория термопластичности. Обсуждены и методы решения задач, дан обзор решений важных для приложений задач о закалке, тепловых ударах, расчете элементов машин и т. п.  [c.6]

Последующее развитие техники полностью подтвердило справедливость мнения В. Л. Кирпичева с существенными уточнениями пластичность необходима не только при наличии ударов, но часто при статических нагружениях для элементов конструкций важна прежде всего местная, а не общая пластичность полезное влияние (увеличение локального энергопоглощения) могут оказывать местные неупругие деформации разной природы, а не только пластические, например вязкие. Выход за пределы чисто упругого состояния вызывается общими или локальными явлениями, существенно повышающими энергопоглощение пластическими или вязкими сдвигами, двойникованием, диффузионными и дислокационными процессами, перемещениями вакансий и т. д. При этом существенно увеличивается скорость нарастания деформаций и соответственно возрастает величина деформации. Например, у сталей наибольшее упругое удлинение имеет величину порядка 1 % (за исключением нитевидных кристаллов, упругое удлинение которых может достигать 5% и более), в то время как наибольшая пластическая деформация достигает десятков процентов. Большинство расхождений между выводами из расчетов теории упругости и сопротивления материалов с результатами механических испытаний и опытом эксплуатации Изделий является следствием проявления неупругих состояний. Эти проявления могут быть как полезными, способствующими местному благоприятному перераспределению напряжений при выходе за пределы упругого состояния, так и вредными чрезмерная общая деформация изделий вследствие текучести и ползучести, затрудненная обработка резанием ввиду высокой вязкости, плохая прирабатываемость и наволакивание материала при трении и т. п.  [c.107]


Вертикальные колебания покрытия цеха. После установки на заводе нового молота с повышенным числом ударов в минуту появились опасные колебания покрытия цеха, выполненного в виде стальной конструкции шедового типа, несущими элементами которой служили стальные фермы, опирающиеся на стены здания. Размах колебаний покрытия достигал 3 мм при частоте 6 гц, а подвешенных к фермам труб — до 5 мм. Молот был остановлен и действовал только в период измерений. Конструкторское бюро завода, исходя из предположения, что причиной вибраций являются периодические удары молота, запроектировало дорогостоящее усиление покрытия. Обследование показало, однако, что виновником колебаний покрытия оказался плохо уравновешенный тяжелый шкив на подвешенном к покрытию трансмиссионном валу, приводящем в движение новый молот. Число оборотов этого вала точно совпало с основной частотой свободных колебаний покрытия и имел место острый резонанс. Замена приводного мотора на другой, с несколько меньшим числом оборотов в минуту, полностью решила вопрос. На рис. 4 показаны две виброграммы с одинаковым масштабом увеличения. Представитель института, руководивший обследованием, произвел на заводе впечатление волшебника, между тем очевидно, что вопрос был самый элементарный и мог бы быть решен инженерами завода, если бы они владели основами теории колебаний.  [c.26]

Полное давление (рис. 14), создаваемое вентилятором, определяется как разность между теоретическим давлением и потерями давления во всех его элементах Н = Ну — ЕДЯ/. Вычисление потерь давления п])оизводится, как это принято в теории турбомашин, по отдельным составляющим. При этом учитываются потери при повороте потока в колесе из осевого направления в радиальное, потери в межлопаточных каналах колеса и в спиральном корпусе, потери на удар при выходе из потока колеса в корпус и из выходного течения корпуса. Значения коэффициентов всех этих составляющих потерь определяются экспериментально.  [c.855]


Смотреть страницы где упоминается термин Элементы теории удара : [c.103]    [c.7]    [c.430]    [c.20]    [c.430]    [c.289]    [c.411]    [c.413]    [c.415]    [c.6]    [c.92]    [c.92]   
Смотреть главы в:

Основы теоретической механики  -> Элементы теории удара

Краткий курс теоретической механики  -> Элементы теории удара

Теоретическая механика  -> Элементы теории удара



ПОИСК



Введение. Элементы теории удара

ГРИКОВ, Ю. В. ПОЗДНЯКОВ, В. А. МЕРКУЛОВ. Элементы теории удара каткового типа свеклоуборочного комбайна

ГРИКОВ, Ю. В. ПОЗДНЯКОВ. Элементы теории удара активного каткового копира

Теория удара

Элементы теории удара Основные уравнения теории удара

Элементы теории удара и динамики точка переменной массы



© 2025 Mash-xxl.info Реклама на сайте