Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение системы А1—Си 76, 79 — Механические свойства 95 — Применение

Из механических свойств ориентированных композитов наиболее доступны для теоретического анализа характеристики при продольном ра стяжении. Так, применение простого. правила смеси или метода запаздывания сдвига для анализа передачи нагрузки при растяжении позволило получить теоретические результаты раньше, чем экспериментальные, или одновременно с ними. Однако объектом расчетов были, главным образом, модельные системы без химического взаимодействия согласно предложенной  [c.137]


Глава начинается с обсуждения основных термодинамических свойств металлов и окислов, причем основное внимание уделено тем окислам, которые могут быть использованы в виде волокон и покрытий. Затем рассмотрено применение методов термодинамики твердых растворов для оценки стабильности композитов. В обзорном плане изложены обширные литературные данные о взаимодействии жидких металлов с окислами, полученные при изучении процессов изготовления керметов и пропитки усов расплавом. Цель этого обзора —обобщить имеющуюся информацию о смачивании окислов жидкими металлами и вывести основные закономерности. Далее проанализировано соотношение между смачиванием и формированием связи в композитах. Применительно к режимам изготовления и условиям службы композитов рассматриваются диффузионная сварка и твердофазные реакции, причем более подробно— кинетика реакций металл — окисел и характеристики поверхности раздела. Глава завершается анализом имеющихся литературных данных о механических свойствах, чувствительных к состоянию поверхностей раздела. Этот анализ ограничен несколькими металлическими системами, упрочненными окислами, которые изучены в настоящее время.  [c.308]

Как с очевидностью следует из проведенного обсуждения, методу пропитки свойственны некоторые трудноразрешимые проблемы. При изготовлении композита пропиткой чрезвычайно важно обеспечить смачивание волокон расплавом. Существенное повышение температуры заливки (например, значительно выше 7пл алюминия) или использование поверхностно-активных веществ может привести к неполному смачиванию в практически важных системах. Вследствие применения указанных приемов происходит недопустимое ухудшение механических свойств волокна, а значит, и всего композита. Покрытия, в частности вольфрамовые, облегчают смачивание, однако при такой толщине, которая приемлема для тонких волокон, они не обладают достаточной долговечностью в контакте с жидким металлом. Волокна большого диаметра (>0,25 мм) в прочных матрицах, которые представляются практически интересными, механически повреждаются (двойникова-нием или скольжением) при охлаждении от температуры пропитки.  [c.333]

Механические свойства 96, 97 — Применение 90—92 — Свойства 91, 92 — Термическая обработка — Режимы 91, 92 — Химический состав 81, 84, 85 >---системы А1—Си 76, 79 — Механические свойства 95 — Применение 87, 88 — Свойства 76, 86—88 -Термическая обработка — Режимы 87, 88 — Химический состав 81—83  [c.301]

К первой группе относятся теоретические погрешности, получающиеся от применения приближенной схемы обработки кинематическая погрешность цепи деления станка погрешности зуборезного инструмента погрешности геометрических элементов станка погрешности установки зуборезного инструмента на станок погрешности от режимов резания погрешности от износа инструмента погрешности от деформаций упругой системы станок — деталь — инструмент в процессе обработки погрешности от температурных деформаций погрешности от внутренних напряжений погрешности от вибраций погрешности предварительной обработки зубчатого венца и заготовки погрешности от колебания механических свойств материала, химического состава, величины припуска и т. д.  [c.259]


Добавление кремния не так значительно повышает механические свойства алюминия, как добавление меди (см. фиг. 56). Вследствие малой твёрдости сплавы А1—51 хуже обрабатываются резанием, чем сплавы А —Си (налипание на резец), особенно при малых содержаниях кремния. В настоящее время обработку этих сплавов облегчают применением специальных резцов из твёрдых сплавов и подбором надлежащих режимов резания. Сплавы системы А1 - 51 отличаются высокими литейными свойствами и хорошо отливаются как в землю, так и в кокиль.  [c.133]

Адаптивные РТК механической обработки в условиях ГАП должны обладать способностью автоматически реагировать на изменение физико-механических свойств заготовок и износ инструмента. Это необходимо для самонастройки системы управления станками с целью обеспечения заданной точности обработки. Например, в токарных станках с ЧПУ все шире применяются средства размерной самонастройки, осуществляющие коррекцию программ управления режущим инструментом по результатам измерения размеров ранее изготовленных деталей. Применение таких средств позволяет автоматизировать процесс управления точностью механообработки. Это достигается благодаря применению САК, непосредственно встраиваемых в станки с ЧПУ и обрабатывающие центры.  [c.274]

Так как методы лабораторных испытаний покрытий для определения их стойкости к воздействию окружающей среды и влияния на механические свойства подложки похожи на такие же испытания суперсплавов без покрытий, то здесь мы не будем подробно их обсуждать. Следует, однако, подчеркнуть, что предполагаемые для данного конкретного применения покрытия и подложки всегда должны рассматриваться как единая система материалов и испытываться совместно, так как в результате взаимной диффузии элементов из подложки и покрытия при достаточно длительных выдержках при высокой температуре рабочие характеристики такой системы могут значительно изменяться.  [c.101]

Использование новых представлений для описания сложных структур позволяет поднять на новую ступень моделирование физико-химических процессов при получении новых материалов. Применение принципов синергетики и теории фрактальных структур дает возможность ввести в этот анализ степень неравновесности системы и описать эволюцию процессов самоорганизации структур. Это служит базой для получения сплавов с заданными свойствами. В монографии показана возможность дальнейшего улучшения физико-механических свойств сплавов путем их получения в неравновесных условиях, отвечающих самоорганизации фрактальных структур.  [c.3]

Наибольшее применение нашли сплавы системы Mg-Al-Zn, особенно сплавы с повышенным содержанием алюминия. Наилучшее сочетание литейных и механических свойств имеют сплавы, содержащие 7,5-10 % А1 (МЛ5, МЛ6). Небольшие добавки цинка улучшают технологические свойства. Гомогенизация, закалка и старение повышают механические свойства этих сплавов.  [c.215]

Промышленное применение высоколегированных сплавов на основе системы Fe- r-Ni обусловлено особыми физико-механическими свойствами, стойкостью в сильно агрессивных средах, окалино-стойкостью и способностью к упрочнению.  [c.199]

В настоящей главе приведен обзор современных достижений в области создания композиционных материалов системы алюминий — борное волокно. Представлены основные сведения по разработке данной системы, обоснованию выбора материалов и наиболее важных технологических методов их изготовления, физическим и механическим свойствам материалов алюминий — бор и перспективам их применения в технике. Авторы стремились построить эту главу таким образом, чтобы она представляла интерес в первую очередь для инженеров-материаловедов и в меньшей степени освещала вопросы механики композиционных материалов, их конструирования и применения.  [c.420]

Современная лабораторная техника применяет для определения механических свойств материалов чрезвычайно обширную и разнообразную номенклатуру машин и приборов. Эти испытательные машины и приборы отличаются своим назначением, областью применения, принципом работы и конструктивными особенностями. В настоящее время типоразмеры испытательных машин и приборов, выпускаемых многими отечественными и зарубежными предприятиями, исчисляются тысячами, поэтому разработка единой классификации по этим четырем указанным признакам привела бы к весьма громоздкой системе.  [c.9]


Режущие и калибрующие элементы входят в число основных конструктивных элементов рабочей части резца и характеризуются рядом геометрических параметров. К таким параметрам относятся углы режущей части, радиусы закругления вершины резца и главной режущей кромки. Влияние каждого из этих параметров на процесс резания многосторонне и различно, зависит от обрабатываемого и инструментального материалов, их физико-механических свойств, размеров сечения срезаемого слоя, режимов резания, состояния системы СПИД. В каждом реальном случае обработки с целью получения нужного экономического эффекта параметры должны определяться индивидуально. Приводимые ниже значения параметров стандартных резцов рассчитаны на достаточно широкую область применения и могут быть использованы как ориентировочные значения для последующих корректировок при эксплуатации. Геометрические параметры резцов, рассматриваемые ниже, не являются углами резания, так как последние кроме геометрических параметров резца характеризуются взаимным расположением резца и обрабатываемого изделия (углы резания в статике) или траекторией взаимного перемещения резца и обрабатываемого изделия (кинематические углы резания). Значение геометрических угловых параметров резцов будут соответствовать углам резания в статике в случае, когда вершина резца рассматривается на высоте центра вращения, а корпус резца перпендикулярен обработанной поверхности. При несоблюдении этих условий углы резания будут отличаться от углов резца. Это нужно иметь в виду при рассмотрении особенностей конструкции резцов вне связи с положением относительно обрабатываемого изделия и использовать за счет корректировки положения резца относительно обрабатываемого изделия для получения более рациональных углов резания. Это одна из особенностей, присущих данной конструкции инструмента, — резцам, которая позволяет при эксплуатации стандартных резцов использовать два пути оптимизации углов резания — переточку рабочей части резца и выбор рационального положения резца относительно обрабатываемой поверхности.  [c.125]

К мягким припоям относятся такие, температура плавления которых не превышает 400 °С, а механические свойства, как правило, довольно низкие (Ов до 70 МПа) поэтому спаянную деталь не следует подвергать механическим нагрузкам. В качестве мягких припоев применяют сплавы легкоплавких металлов свинца, олова, висмута, кадмия, чаще всего свинца и олова. Наиболее легкоплавким сплавом в системе РЬ — 5п является эвтектический, содержащий 62% Зп и 38% РЬ, т. е. 1/3 свинца поэтому в производстве он получил название третника, а его стандартное обозначение ПОС-61 (припой оловянно-свинцовый, 61% 5п). На практике находят применение припои ПОС-90, ПОС-50, ПОС-30, ПОС-40, застывающие в ин-  [c.172]

В настоящее время в промышленности находят применение сплавы алюминия с медью, магнием, цинком, кремнием и марганцем. Типичным представителем сплавов системы А1—Си является дуралюмин, который содержит, % Си 4 Mg 0,6 Мп 0,6 51 и Ре 0,7. После закалки дуралюмин представляет собой пересыщенный твердый раствор. Высокие механические свойства дуралюмин приобретает лишь после естественного или искусственного старения.  [c.138]

Целесообразность применения центробежного литья определяется рядом его преимуществ экономией стержневых смесей, ввиду отсутствия стержня для получения полости в цилиндрической отливке (рис. 100, а я в), отсутствием литников или уменьшением веса литниковой системы по сравнению с литьем в неподвижные формы, большей плотностью и повышенными механическими свойствами получаемых отливок, возможностью получения более тонкостенных отливок из сплавов, обладающих низкой жидкотекучестью, высокими технико-экономическими показателями производства.  [c.186]

Сплавы этой системы, кроме основных легирующих элементов (магния и кремния), могут содержать в своем составе марганец или хром, медь и титан. Прочностные свойства полуфабрикатов из сплавов А1—Мд—51 резко снижаются в случае применения искусственного старения после вылеживания их при комнатной температуре. Для восполнения потери механических свойств в сплавы вводят медь, марганец или хром. Эффект искусственного старения от добавки этих элементов увеличивается, а период старения, необходимый для достижения максимального упрочнения, сокращается. Особо заметный эффект наблюдается при комбинированном введении в сплав марганца или хрома и меди [8]. Помимо улучшения механических свойств, марганец и хром заметно повышают коррозионную стойкость сплавов, в то время как медь существенно снижает ее. Чем больше содержание меди в сплавах (в пределах допустимого по ГОСТ 0,15—0,5%), тем больше их склонность к межкристаллитной коррозии в искусственно состаренном состоянии. В естественно состаренном состоянии сплавы А1—Мд—51 отличаются высокой коррозионной стойкостью независимо от количества меди. Сплавы А1—Мд—51, имеющие в своем составе марганец (или хром) в небольших количествах, порядка 0,15—0,35% (например, в промышленных сплавах АДЗЗ и АВ), склонны к образованию грубой рекристаллизованной структуры при нагреве их под закалку. Особенно это явление наблюдается  [c.69]

В табл. 68 приведены физические свойства сплавов системы А1—Ве—М при различных содержаниях бериллия, а в табл. 69 — механические свойства при температурах (—196)—(500)° С сплава с 30% Ве, нашедшего применение в ряде опытных конструкций.  [c.241]

Главной причиной температурных ограничений дли применения полиэтиленовых труб является нх низкая термостойкость. При температуре воды 60—75 °С, при которой обычно эксплуатируются системы горячего водоснабжения, эти трубы быстро стареют, теряют свои механические свойства и разрушаются.  [c.30]

Более перспективна для разработки новых сплавов система Си—А1—Мп. Это положение основывается на ряде положительных свойств марганца как легирующего компонента. Введение марганца в алюминиевые бронзы повышает их прочностные и улучшает технологические свойства. Легирование марганцем способствует также повышению стойкости сплавов против кавитационного разрушения и наиболее полному раскислению меди в процессе выплавки бронзы. Химические составы и механические свойства бронз системы Си—А1—Mg, наиболее широко применяемых в отечественной и зарубежной промышленности, приведены в табл. I. 35. При этом следует отметить, что зарубежные сплавы системы Си— А1—Мп по составу практически не отличаются от отечественной бронзы Бр. АМц9-2. В мировой промышленности, таким образом, нашли применение сплавы, лежащие на диаграмме состояния системы Си—А1—Мп в области повышенного содержания алюминия при нижнем, ограниченном содержании марганца. В связи с этим в настоящее время преждевременно считать, что с точки зрения изыскания высокопрочных сплавов система Си—А1—Мп полностью исчерпана для дальнейших исследований. Определенный интерес представляет изучение свойств сплавов с повышенным содержанием марганца, который положительно влияет на уровень механических и технологических свойств легированных бронз. Алюминиевые бронзы с повышенным содержанием марганца, очевидно, могут найти себе применение как новые литейные и деформируемые сплавы. При этом для методически наиболее правильных изысканий необходимо более конкретное представление о медном угле диаграммы состояния системы Си—А1—Мп.  [c.86]


Инженеры-строители увидели возможное применение поперечных волн в своей отрасли раньше геофизиков (патент Рикера, 1941). В благоприятных условиях, легкого источника энергии и короткой системы наблюдения метода преломленных волн достаточно для получения скоростей продольных и поперечных волн в приповерхностных отложениях. Как будет показано, достаточно знать эти скорости и оценку плотности, чтобы вывести модули упругости, которые связаны с механическими свойствами пород и, следовательно, с безопасностью строительства таких объектов как дамбы или туннели (Suyama, 1984).  [c.2]

Нерви [19, 20] показал, что при высоком массовом содержании упрочнителя и его равномерном распределении можно получить водонепроницаемый однородный материал с механическими свойствами, отличными от свойств бетона, упрочненного обычным способом, обладающий высоким уровнем упругости и сопротивлением растрескиванию. Нерви провел ударные испытания железобетонных плит толщиной до 6,3 см. Результаты показали, что при ударах появляются только трещины в цементе и происходит деформация упрочнителя, но не образуется отверстий. Были проведены испытания с целью установления оптимального соотношения между размером ячеек стальной сетки и составом раствора для по.лучения максимальной податливости материала без растрескивания. В 1943 г. Итальянское военно-морское ведомство утвердило железобетон в качестве материала для корпусов. После второй мировой войны в Италии из железобетона были построены различные суда, в том числе и 165-тонная моторная яхта и 12-метровое двухмачтовое судно, которые функционируют и в настоящее время. Из-за консерватизма в судостроительной промышленности железобетоны широко не использовались в качестве строительного материала для изготовления корпусов вплоть до 1959 г., когда они снова были применены в Великобритании для изготовления корпусов прогулочных лодок. При этом был несколько изменен состав материала, что обусловило интерес к этому материалу со стороны новозеландских фирм и некоторых других стран. До настоящего времени применение железобетонов как материалов для строительства судов ограничивалось в основном корпусами из-за того, что изготовители должны были иметь собственные упрочняющие системы, разработанные технологические процессы изготовления и замешивания бетона. Информация по железобетонам и их применению была недостаточна.  [c.256]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Обработка заготовок со стабильным по величине припуском и однородными физико-механическими свойствами, использование в АЛ станков с высокой жесткостью и геометрической точностью, применение высококачественного инструмента, контрольных автоматов и автоподналадчиков, рациональная система обслуживания и ремонта оборудования — все эти факторы позво-  [c.227]

Для применения рассматриваемой системы необходимо, чтобы оптовые цены верно отражали соотношение затрат производства и эффективности использования отливок. Как известно, трудоемкость изготовления отливки принято определять в основном сложностью ее формы, наличием отверстий, фасонных выступающих частей, а эксплуатационные качества литой детали — прочностью, износостойкостью и другими физико-механическими свойствами. Заготовка должна иметь точные размеры, легко обрабатываться режущим инструментом. Все это многообразие факторов, влияющих на изготовление и использование отливки, может быть учтено достаточно подробно и точно путем применения экономикоматематических методов и ЭВМ.  [c.195]

Бронзы системы Си—А1—Ре, обладая хорошими технологическими свойствами, удовлетворительной коррозионной стойкостью и сравнительно высокими показателями механических свойств, нашли широкое применение как в отечественной промышленности, так и за рубежом. Химические составы и механические свойства бронз системы Си—А1—Ре, наиболее распространенных в отечественной и зарубежной промышленности, приведены в табл. I. 35. Анализируя систему Си—А1—Ре, следует отметить неперспектив-ность ее для изыскания новых высокопрочных сплавов.  [c.85]

Легирование железом алюминиево-марганцовистых бронз способствует еще большему. повышению уровня их механических и технологических свойств. В отечественной и зарубежной промышленности достаточно широко применяются бронзы системы Си— А1—Мп—Ре(табл. I. 35). Они используются как в литом состоянии, так и после обработки давлением. Эти сплавы сочетают удовлетворительные механические свойства с хорошими антифрикционными свойствами при достаточной коррозионной стойкости. Однако из сопоставления данных табл. I. 35 следует, что бронзы системы Си—С1—Мп—Ре не отличаются разнообразием в химическом составе. В основном в мировой промышленности находят применение сплавы типа Бр. АЖМц10-3-1,5. В связи с этим следует считать, что система Си—А1—Мп—Ре является достаточно перспективной для дальнейших разработок. При этом реальным направлением изыскания более совершенных сплавов этой системы является  [c.86]


Помимо железа и марганца распространенным легирующим компонентом алюминиевых бронз является также никель. Легирование алюминиевых бронз никелем способствует повыщению их коррозионной стойкости и улучшению механических, а также технологических свойств. Никель особенно желателен в случае присутствия в сплаве железа, так как он задерживает образование включений железистой составляющей и тем повышает стойкость сплавов против кавитационного разрушения. Однако чрезмерного увеличения содержания никеля следует опасаться, так как он является дорогим и дефицитным материалом. Химические составы и механические свойства наиболее распространенных сплавов на медной основе системы Си—А1—N1—Ре приведены в табл. I. 35. Анализ бронз этой системы показывает, что в промышленности используются сплавы типа отечественной бронзы Бр. АЖН10-4-4, отличающиеся хорошими механическими и антикоррозионными свойствами. Однако рекомендовать применение сплавов этой системы следует лишь в особых случаях, так как они содержат повышенное количество остродефицитного и дорогостоящего никеля. Кроме того, система Си—А1—Ре—N1 не может рассматриваться как достаточно перспективная для изыскания более высокопрочных сплавов без дополнительного легирования, так как промышленные сплавы этой системы содержат верхний оптимальный предел легирующих компонентов. В связи с этим целесообразно искать заменители этих дорогих сплавов, сосредотачивая усилия на замене никеля менее дефицитными металлами.  [c.89]

Для получения суперсплавов с требуемым комплексом механических свойств предпочтение следует отдавать композициям, не обладающим высоким сопротивлением горячей коррозии. Не следует ожидать, что ситуация в будущем изменится, даже если основное внимание будет перенесено на получение мо-нокристаллических суперсплавов. Наиболее перспективным способом повышения сопротивления суперсплавов коррозионному разъеданию является применение покрытий, а также более точное определение возможных механизмов коррозионной деградации, которым должен противостоять материал. Существенно повысить стойкость к горячей коррозии системы суперсплав-покрытие можно за счет выбора такого суперсплава, который обладает наивысшим сопротивлением именно тому виду горячей коррозии, который играет доминирующую роль в данных рабочих условиях. Затем следует выбрать или разработать соответствующее покрытие, повышающее сопротивление системы этому конкретному виду коррозионной деградации.  [c.88]

И в будущем большое внимание будет уделяться оптимизации системы покрытие/подложка с целью достижения максимального защитного эффекта при минимальном влиянии на механические свойства подложки. Это будет стимулировать применение в качестве подложки материалов новых классов, таких как упрочненные волокнами суперсплавы, сплавы, упрочненные дисперсными оксидами, и т.д., что, в свою очередь, потребует, чтобы взаимодействие подложки с покрытием не влияло на стабильность упрочняющих фаз. И, наконец, такое же, если не большее, внимание должно уделяться проблеме испытания всех вновь разработанных покрытий. Особенно это относится к случаю относительно хрупких покрытий, таких как ТЗБП, когда термомеханические циклические испытания, применяемые для оценки циклической стойкости покрытий, должны быть как можно более близкими к реальности и, в то же время не быть чересчур жесткими, что может свести на нет все возможные преимуш ества таких испытаний. Как всегда, окончательное заключение о пригодности той или иной системы покрытия будет получено лишь после натурных испытаний в реальных условиях эксплуатации двигателя в рабочем режиме.  [c.121]

Содержит около 600 марок сталей и сплавов чёрных металлов. Для каждой марки указаны назначение, химический состав, механические свойства в зависимости от состояния поставки, температуры, режимов термообработки, поперечного сечения заготовок, места и направления вырезки образца, описан комплекс технологических свойств. Приведены системы маркировки сталей по Евронормам и национальным стандартам. В приложениях даны физические свойства механические свойства в зависимости от температур отпуска, испытания, ковочных жаропрочные свойства марки, характеристики и области применения электротехнических и транспортных сталей зарубежные материалы, близкие по химическому составу к отечественным перевод твёрдости по Бринеллю, Роквеллу, Виккерсу и Шору соответствие различных шкал температур.  [c.4]

В основном в конструкциях применяют сплавы. Алюминиевые сплавы подразделяют на. деформируемые, применяемые в катаном, прессованном и кованом состояниях, и литейные, используемые в виде отливок. Деформируемые сплавы в свою очередь подразделяются на сплавы, не упрочняемые термообработкой (система легирования А1-Мп марки АМц, Al-Mg марки АМг) и сплавы, упрочняемые термообработкой (система легирования AI-Mg- u Al- Zn- Mg Al-Si -Mg). В сварных конструкциях чаще всего используют полуфабрикаты (листы, профили, трубы и т.п.) из деформируемых, термически не упрочняемых сплавов в ненагартованном виде. При сварке термоупрочиенных сплавов металл в ЗТВ разупрочня-ется, поэтому их применение целесообразно только при возможности последующей термообработки. Химический состав и механические свойства типичных марок алюминия и его сплавов приведены в табл. 12.2.  [c.438]

В данной области применения наноструктурных покрытий можно вьщелить следующие основные группы многослойных пленок энергосберегающие (поглощающие тепло) покрытия теплоотражающие покрытия интерференционные и дифракционные тонкопленочные системы светопропускающие и радиационностойкие покрытия защитные покрытия с высокими механическими свойствами.  [c.488]

Проблемы совместимости, с которыми пришлось столкнуться в связи с применением других волокон в титановых матрицах, побудили Тресслера и Мура [32] исследовать монокристальное волокно из окиси алюминия. Анализ термодинамических данных позволил предположить суш.ествование определенных проблем, связанных с совместимостью, поэтому одна из целей исследования состояла в изыскании минимальных условий диффузионной свархш, 1 араптирующих успешное производство композиционных материалов. Другая задача данной работы заключалась в установлении механических свойств, достин<имых в этой системе.  [c.326]

Наибольшее применение нашли сплавы системы Mg - А1 - Zn, особенно сплавы с повышенным содержанием алюминия. Для сплавов этой системы характерен более широкий, чем у алюминиевых сплавов, интервал кристаллизации. В результате они обладают пониженной жидкотеку-честью, усадочной пористостью и низкой герметичностью, склонностью к образованию горячих трещин. С увеличением содержания алюминия литейные свойства сначала ухудшаются, поскольку увеличивается интервал кристаллизации, а затем при появлении неравновесной эвтектики — улучшаются повышаются прочностные характеристики. Однако из-за большого количества интерметаллидных фаз, в том числе и эвтектических (рис. 13.14), сплавы с большим содержанием алюминия обладают пониженной пластичностью. Наилучшее сочетание литейных и механических свойств имеют сплавы, содержащие 7,5 - 10 % Ali(MJI5, МЛб). Небольшие добавки цинка способствуют улучшению технологических свойств. Гомогенизация цри 420 °С (12 - 24 ч) и закалка с этой температуры способствуют повышению прочности и пластичности. Вследствие малой скорости диффузии алюминия в магнии сплавы закаливаются при охлаждении на воздухе. Старение при 170 — 190 °С дополнительно повышает временное сопротивление и особенно предел текучести сплавов.  [c.381]

Известные аустенитные стали системы Fe—Мп являются, как правило, стабильно парамагнитными и однофазными. Установленные аномалии тепловых и упругих констант инварного типа у этих сплавов явились основой для создания принципиально нового класса — антиферромаг-нитных сталей с особыми физическими и механическими свойствами, а использование железомарганцевых сплавов с основной структурой е-мартенсита в сочетании с применением известных методов воздействия на интенсивность у=рг 8-превращения (легирование, фазовый и механический наклеп, всестороннее давление), явилось одним из важных направлений в создании высокопрочных немагнитных сталей [1—3].  [c.10]

Принцип применения системы с двойным вращением для стабилизации углового положения остается обещающим. Однако теперь становится очевидно, что его осуществление требует до начала полета тщательного определения механических свойств системы и всеобъемлющего динамического исследования весьма сложных математических дюделей космических аппаратов.  [c.121]

Термоциклическая обработка в области температур дисперсионного твердения эффективна при воздействии на деформируемые алюминиевые сплавы, на пример авиали а. с. 960310, 2Ш]. Эти сплавы относятся к наиболее низколегированным деформируемым сплавам системы А1— Mg—Si с суммарным содержанием легирующих элементов, не пре-выц ающим 1,5—2 %. При соотношении концентраций Mg Si = 1,73 единственной упрочняющей фазой является р-файа (Mg2Si) или близкая eft по составу р -фаза. Наличие переменной растворимости химических элементов в зависимости от температуры позволяет в широких пределах менять механические свойства сплавов путем ТО. Применение к ним  [c.149]


В производство внедрена научно обоснованная система допусков размеров строительных металлических сварных конструкций при их изготовлении и монтаже. В дальнейшем будут развиваться экономические исследования по установлению рационального применения строительных металлических сварных конструкций. Будет разработана методика определения оптимальных решений строительных металлических сварных конструкций с использованием электронно-вычислительных машин, в том числе при разработке типовых проектов, составлении проектов производства работ и технологических процессов сварки. Научно-исследовательские институты проведут работы по созданию новых экономичных марок сталей высокой прочности, а также определению их физнко-механических свойств и свариваемости. Будут совершенствоваться сортаменты профилей с учетом внедрения сталей высокой прочности. Найдут широкое применение легированные стали, что позволит уменьшить вес строительных металлических сварных конструкций. Ручная электродуговая сварка при изготовлении и монтаже конструкций будет почти во всех случаях заменена механизированными способами сварки. Существующая в настоящее время обработка металла механическими способами (строжка, фрезеровка) и кислородная резка будут в значительной степени вытеснены плазменной резкой.  [c.15]

Сущность этих методов заключается в приведении функционала, входящего в вариационное уравнение (3.20), к квадратичному виду. Это, как известно, значительно упрощает математический аппарат. В частности, при применении метода Ритца система (3.43) преобразуется в систему линейных алгебраических уравнений. Методы последовательных приближений позволяют сколько угодно точно учитывать реальные механические свойства деформируемых тел. В первом приближении в уравнении (3.20) функция (Н) принимается постоянной величиной (какой-то усредненной по объему тела либо просто произвольной), называемой по аналогии с ньютоновской линейно-вязкой средой с коэффициентом вязкости л. Это достигается прямыми методами решение квадратического функционала  [c.98]

В качестве отвердителей эпоксидных олигомеров могут применяться различные продукты. Важнейшими можно считать следующие щелочные соединения на основе аминов (производные аммиака НН.,, в котором атомы водорода замещены углеводородными радикалами) кислые — ангидриды различных органических кислот. В качестве отвердителей имеют применение также и некоторые олигомеры-(фенолформальдегидные, анилинформальдегидные). Амин-иые отвердители могут отверждать эпоксидные смолы при комнатных температурах, но для ускорения отверждения и получения оптимальных свойств отвержденного продукта рекомендуется повышенная температура (70—100° С). Ангидридные отвердители требуют применения температуры в пределах 120—200° С. Отверждение эпоксидных олигомеров происходит путем соединения олигомеров. с отвердителем без выделения летучих продуктов, что обеспечивает небольшую усадкув процессе отверждения. Иногда к смолам добавляют так называемые активные разбавители, уменьшающие вязкость для улучшения технологичности олигомеров при их использовании и входящие в состав отвержденных смол. Возможно использование ускорителей отверждения. На свойства отвержденных продуктов влияет не только тип олигомера, но и отвердитель. Олигомеры, отвержденные ангидридами, имеют более высокие электри-" ческие и механические свойства, чем отвержденные аминами. Нагревостойкость композиционных материалов на основе неорганических наполнителей и эпоксидных полимеров может быть доведена до класса Н, но в большинстве случаев эпоксидные полимеры дают системы изоляции классов нагревостойкости В и Р. Циклоалифатические полимеры имеют по сравнению с диановыми более высокие электрические свойства, влаго- и химостойкость, нагревостойкость, атмосферостойкость и трекингостойкость, а также большую скорость отверждения. Известным недостатком циклоалифатических смол является их хрупкость. Эпоксидные полимеры отличаются высокими механическими свойствами, хорошей адгезией к разным материалам. Они обладают хорошей короностойкостью. Следует отметить кроме  [c.141]


Смотреть страницы где упоминается термин Применение системы А1—Си 76, 79 — Механические свойства 95 — Применение : [c.2]    [c.15]    [c.590]    [c.301]    [c.393]    [c.211]    [c.4]    [c.44]    [c.240]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.0 ]



ПОИСК



59-1-Механические Применение

Механические системы механических систем

Свойства системы

Система механическая

Системы Применение



© 2025 Mash-xxl.info Реклама на сайте