Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изготовление корпусов

Разъемные корпуса облегчают монтаж валов к допускают регулирование зазоров в подшипнике. Поэтому они имеют преимущественное применение в общем и особенно тяжелом машиностроении. Крышку крепят к корпусу шпильками (рис. 9.3). Чтобы предотвратить боковое относительное смещение крышки и корпуса, разъем выполняют ступенчатым. Однако это усложняет изготовление корпуса подшипника. Поэтому в последнее время разъем делают по одной плоскости, а крышку фиксируют относительно корпуса двумя коническими штифтами. Возможны также конструкции корпусов с плоским разъемом без штифтов.  [c.153]


Если подшипники располагают в отдельных корпусах, то можно ожидать значительный перекос осей вала и вкладыша. Перекос возникает от погрешностей изготовления корпусов подшипников, вкладышей, плиты (или рамы), на которой устанавливают корпуса, а также от погрешностей их установки. В этом случае отношение // / должно быть минимальным.  [c.155]

В единичном и мелкосерийном производствах при изготовлении корпусов высокой точности применяют координатно-расточные станки. В этих станках инструмент устанавливают либо непосредственно в шпинделе, либо в концевой оправке. Координация шпинделя относительно оси отверстия обеспечивает погрешность межосевых расстояний не более 5 мкм, а погрешность размеров и геометрической формы отверстий — не более 2. .. 3 мкм.  [c.180]

Колеса установлены в отъемных корпусах. Преимущества предыдущей конструкции сохраняются, однако жесткость главного корпуса значительно уменьшается. При изготовлении корпусов необходимо выдержать строгую соосность центрирующих буртиков и отверстий под подшипники. Редуктор более приспособлен для подвесного крепления, хотя возможна установка его нижней плоскостью с помощью лап, отлитых заодно с нижней крышкой  [c.74]

В конструкции 6 с разъемом в плоскости, перпендикулярной к оси вала, возможна раздельная обработка частей корпуса. Изготовление корпуса упрощается. Конструкция взаимозаменяемая.  [c.134]

Сварочное производство необходимо для изготовления многих элементов ЭМП. В частности, различные способы электрической сварки (дуговая, точечная и др.) применяются для изготовления корпусов из листовой стали, приварки крестовин, ребер щитов и т. п.  [c.184]

К этой группе материалов относятся низкоуглеродистая электротехническая сталь, применяемая для изготовления реле, сердечников и полюсов электромагнитов, низколегированные кремнистые (1—2%) горячекатаные стали для изготовления корпусов динамомашин и генераторов, высоколегированные кремнистые (4—5%) горячекатаные стали для изготовления гидрогенераторов и машин переменного тока повышенной частоты и среднелегированные (2,5—3,5 Si) холоднокатаные текстурованные стали (трансформаторная сталь) для изготовления Турбо- и гидрогенераторов, а также крупных электродвигателей постоянного тока. Эти материалы сочетают высокие магнитные свойства, хорошую технологичность, хорошие или удовлетворительные механические свойства и сравнительно низкую стоимость.  [c.131]

В приборостроении дуралюмины Д1 и Д16 применяются для изготовления корпусов радиоаппаратуры, приборов электродвигателей, приборных стрелок и шкал, вычислительных машин.  [c.270]


Пластмассы. Это материалы на основе высокомолекулярных органических соединений (смол), являющихся связующими. Они имеют 40-70% несущих компонентов (наполнителя) в виде волокон (текстильных, стеклянных, асбестовых), ткани, бумаги, муки (древесной, минеральной) и др. Благодаря малой плотности (р = 1,1 -т- 2,3 г/см ), высокой коррозионной стойкости и сравнительно высокой прочности (о, = 60 -т- 300 МПа) пластмассы применяют (часто взамен металлов) для изготовления корпусов, червячных колес и т. д.  [c.277]

Колеса 6, 7 и I0, а также шкив соединены с валом с помощью шпонок 2 и 13, их осевое положение зафиксировано с помощью крышек 4 м 12 через кольца (вту.зки) 8 и / / и подшипники 5 и 14 — опоры вращающегося вала. Шкив зафиксирован в осевом направлении с помощью шайбы 3. Для упрощения сборки и изготовления корпус коробки имеет два горизонтальных разъема, в плоскости которых лежат оси валов.  [c.369]

Магниевые сплавы получили широкое применение в приборостроении и авиационной промышленности для изготовления корпусов приборов, деталей двигателей, инструментов, корпусов фотоаппаратов, пишущих машинок и пр.  [c.51]

Сварные заготовки применяют в единичном и мелкосерийном производстве при изготовлении корпусов относительно простой геометрической формы. В этом случае не требуются первоначальные затраты, связанные с изготовлением модельного комплекта, кокиля и т. п. Однако необходимо учитывать затраты, связанные с раскроем и резкой листовой стали, разделкой кромок, изготовлением сварочных приспособлений. Применение сварных и штампо-свар-ных заготовок в серийном производстве требует хорошо оборудованного сварочного цеха.  [c.229]

Полиметилметакрилат из-за хорошей прозрачности часто называют органическим стеклом. Это полярный термопластичный диэлектрик с малой гигроскопичностью и значительной химостойкостью применяется как конструкционно-изоляционный материал, в том числе для изготовленная корпусов приборов, шкал, линз и пр. Из-за довольно высоких дугогасящих свойств применяется в выключающей аппаратуре. Листовое органическое стекло хорошо поддается механической обработке, легко сваривается и склеивается.  [c.124]

Прочность стеклопластиков, применяемых для изготовления корпусов судов, проверяют акустическим импульсным методом. При этом измеряют два параметра материала — скорость звука с и коэффициент затухания а. Искомую прочность оценивают по формуле  [c.286]

Была изучена возможность применения стеклопластиков для изготовления корпусов длиной до 150 м [23]. Эти исследования показали, что применение стеклопластиков для таких судов связано с довольно большим риском и экономически невыгодно. Маловероятно, что стеклопластики будут применены для этих целей, хотя по сравнению со стальными конструкциями может быть достигнуто некоторое снижение затрат. Скорее всего, стеклопластики найдут применение при изготовлении корпусов судов длиной до 60 м и отдельных узлов более крупных корпусов.  [c.254]

С ростом интереса к железобетону во многих странах были проведены его расширенные исследования. После двух лет испытаний железобетон был рекомендован в качестве материала для строительства корпусов рядом фирм. Результаты всесторонних исследований и экспериментов, проведенных в СССР [2] с железобетонами, показывают, что они могут быть эффективно использованы как для изготовления корпусов судов водоизмещением до 100 т, так и для создания отдельных конструкций судов со стальными корпусами.  [c.256]

Железобетонные конструкции легче формуются, для них не требуется дорогостоящего оборудования, особенно при изготовлении однотипных корпусов и каркасном методе формования. При использовании способа формования в полости требуется оборудование, аналогичное тому, которое применялось при изготовлении корпусов из стеклопластика. При некотором изменении расположения основных несущих элементов арматуры из железобетона можно изготовлять практически любую форму корпуса. По сравнению с корпусами из дерева или стеклопластика корпус из железобетона имеет более высокую износостойкость, а также наивысшую огнестойкость, превышающую этот показатель даже для стали (испытания проводились при температуре 1700 С в течение 1,5 ч).  [c.257]

Увлажнители для печей изготовляют из стеклопластиков в течение нескольких лет. Вероятно, они наилучшим образом иллюстрируют возможность объединения нескольких деталей в одну при применении стеклопластиков. Необходимы только две прессованные детали для изготовления корпуса, вместо нескольких металлических. К основным преимуществам, обусловливающим низкую стоимость материала и трудовых затрат при производстве изделий из стеклопластиков, относятся возможность формовать за одну операцию арматуру для крепления деталей, входящих в данную конструкцию, разделительные перегородки, а также возможность введения красящих добавок в процессе формования. Благодаря коррозионной стойкости стеклопластиков потребитель может протирать корпуса приборов влажной тряпкой, при этом не возникает питтинговой коррозии поверхности, которая является проблемой при использовании стальных корпусов.  [c.386]


В результате автоматизации, ряда сварочных операций, конструкторских решений и более рационального совмещения различных сварочных, термических и механических процессов длительность изготовления корпуса реактора сокращена более чем на 170 дней по сравнению с первоначальной технологией.  [c.242]

Мартенситно-стареющие стали - это высокопрочные стали с незначительным содержанием углерода. Упрочнение их достигается использованием элементов, заменяющих углерод никеля, кобальта и молибдена. Эти элементы обусловливают дисперсионное твердение мартенситной железо-никелевой матрицы при старении, отсюда и название сталей. Такие стали можно применять в станкостроении, самолетостроении, космической технике. Они идут на изготовление корпусов ракетных двигателей, деталей шасси самолетов, штампованных узлов и крепежных деталей [27].  [c.40]

Сжимающие напряжения в камере могут быть получены в том случае, если наибольший коэффициент линейного расширения будет у материала, из которого изготовлен корпус захвата, а наименьший — у материала гайки, соединенной с образцом. Этому требованию отвечают латунь или бронза для корпуса захвата, сталь для гайки и сплав на висмутовой основе. Положительным свойством сплавов на висмутовой основе (например, Л70) является также увеличение объема после затвердевания, что способствует возрастанию сжимающих напряжений в камере захвата.  [c.140]

Экономичность сварно-литых конструкций может быть подтверждена также и на примерах изготовления корпуса редуктора и корпуса цилиндра низкого давления на Харьковском турбинном заводе.  [c.434]

Технологический процесс изготовления корпуса насоса первоначальной конструкции  [c.676]

Последний метод имеет то преимущество, что изготовление корпуса установочного калибра из того же металла, что и измеряемой детали, значительно уменьшает температурные погрешности, вызы-гаемые различными коэффициентами линейного  [c.466]

На рис. 177 1юказан корпус бункера, который имеет форму четырехгранной усеченной пирамиды. При изготовлении корпуса вьпюлнялось построение развертки.  [c.100]

Углеродистая сталь обыкновенного качества обозначается марками СтО, Ст1 и т. д. доСтб. Цифра в обозначении носит чисто условный характер, но соответствует либо определенному составу, либо механическим свойствам, либо и тем и другим вместе. Стали марки СтО, Ст1 и Ст2 применяют для изготовления корпусов аппаратов, труб, строительных конструкций СтЗ, Ст4 — крепежных изделий (болтов, гаек, шпилек и т. д.), Ст5, Стб используют для изготовления валов, шестерен, шпонок и т. п. Пример условного обозначения Ст4 ГОСТ 380—71 .  [c.286]

Причины шума зависят не только от качеетва обработки зубьев, но и от сборки зубчатых передач, неточности изготовления корпусов и валиков, деформации валиков, несущих зубчатые колеса, смазки и пр.  [c.320]

Так, при изготовлении корпуса реактора ВВЭР-1000 из стали 15Х2НМФА и корпуса парогенератора из стали 10ГН2МФА обечайки толщиной 80...285 мм собирали на скобах и сваривали многопроходной сваркой под флюсом с подогревом (120...250°С), причем заданную температуру в процессе сварки поддерживали с помощью  [c.290]

Конструкция с радиальной сборкой по достоинствам й недостаткам противоположна конструкции с осевой сборкой. Изготовление корпуса, представляющего собой две массивные отливки, затруднительно. Механическая обработка сложна. Внутренние полости обрабатывают или откх 1-, тым способом — для каждой половины корпуса в отдельности с последующей подгонкой стыка, или закрытым — при половинках кор собранных на контрольных штифтах по предварительно начисто обраб тайным поверхностям стыка. И тот и другой способы требу ют специальных инструментов, мерительных приспособлений, а также высокой квалификации исполнителей. ]  [c.9]

ОСТ 26-1473-76. Сосуды и аппараты сварные стапьные Типовой технологический процесс изготовления корпусов. — 1977. — 36 с  [c.262]

В условиях трения и изнашивания, сопровождаемых большими удельными динамическими нафузками, высокой износостойкостью отличается высокомарганцовистая сталь марки Г13. Эта сталь имеет в своем составе 1,0-1,4% углерода и 12,7-14% марганца, обладает аустенитной структурой и относительно невысокой твердостью (200-250 НВ). В процессе эксплуатации, когда на деталь узла трения действуют высокие нафузки, которые вызывают в материале деформацию и напряжения, превосходящие предел текучести, происходит интенсивное наклепывание стали Г13 и увеличение твердости и износостойкости. После наклепа сталь сохраняет высокую ударную вязкость. Благодаря этим свойствам сталь Г13 широко используется для изготовления корпусов шаровых мельниц, щек камнедробилок, крестовин рельсов, гусеничных траков, козырьков землечерпалок и т.д. Необходимо отметить, что склонность к интенсивному наклепу является характерной особенностью сталей аустенитного класса, поэтому их широко ис1юльзуют для изготовления деталей, работающих в условиях трения с динамическими, ударными воздействиями сопряженных деталей или рабочего тела (среды).  [c.18]

Сборные корпусы коробчатой формы состоят из пластин, угольников и крышек, соединенных винтами и штифтами. Они имеют достаточную прочность, жесткость и хорошо заш,ищают механизм от внешних воздействий, но ограничивают возможности узловой сборки. Сборные корпусы обычно используются для макетов и опытных образцов механизмов, когда затраты времени и средств на изготовление корпусов цельных или разъемных нерентабельны из-за малого количества изделий.  [c.325]

Титановые сплавы. Сплавы титана с алюминием и медью и другими присадками (ВТЗ-1, ВТ5, ВТ9, ВТ16, ВТ22 и др.) имеют после термообработки высокую прочность (Сз = 900 1300 МПа) и малую плотность (р = 4,5 г/см ), высокую коррозионную стойкость. Их используют для изготовления корпусов, трубопроводов, крепежных деталей, заклепок и других деталей изделий авиационно-космической техники, судостроения, химической и пищевой промышленности.  [c.277]


В паровых турбинах применяют литые и сварно-литые корпусы С горизонтальным разъемом. Иногда предусматривают также технологический вертикальный разъем, который после изготовления корпуса наглухо сбалчивают или заваривают. Верхняя часть корпуса называется крышкой, нижняя — собственно корпусом.  [c.31]

При ( зработке конструкции реактора предусмотрено также уменьшение протяженности и размеров сварных швов в корпусе реактора и, трубопроводах. Это достигается путем изготовления корпусов из кованых крупногабаритных обечаек и применения индукционного нагрева при гибке элементов трубопроводов.  [c.41]

Стеклопластики нашли широкое применение в конструкциях разработанных и построенных в США маломестных транспортных средств. Примеры таких транспортных средств представлены на рис. 2 и 4. На рис. 2 показан вагон Старкар корпорации АЫеи. Вагоны этой системы имеют следующие характеристики длина 4,2 м, ширина 2 м, высота 2,7 м, масса 1,6 т, номинальная мощность 60 л.с., максимальная скорость 48 км/ч, ускорение при изменении скорости от 0 до 40 км/ч 1,2 м/с . Конструкция такого вагона и его оборудование описаны корпорацией АЫеи [1]. Кабина вагона выполнена из армированной стекловолокном полиэфирной смолы, обладающей огнеупорными свойствами. В качестве армирующего наполнителя использовалась рубленая ровница из стекловолокна, так же как и при изготовлении корпусов автомобилей, лодок и т. д. Выбор такого материала обусловлен следующими факторами способностью материала поглощать энергию ударов, что позволяет кабине вагона выдерживать интенсивную эксплуатацию без существенной деформации качеством отделки, сравнимым с качеством отделки лучших автомобилей вследствие объемной окрашенности и гладкой поверхности минимальными затратами па обслуживание.  [c.183]

Выпуклые формы применяют в ограниченной степени, обычно для таких деталей, внутренние поверхности которых должны быть гладкими, например кают лайнеров и трюмов. Этот способ не используют для изготовления корпусов из-за его трудоемкости и неэкономичности при окончательной обработке внешних поверхностей. Судостроительная промышленность начала проводить разработку в области создания недорогого производственного оборудования. Эта необходимость возникла в результате конкуренции при изготовлении больших корпусов из стеклопластиков, которые обычно конструируются и изготовляются либо в единственном экземпляре, либо в очень ограниченных количествах. Наиболее распространенный недорогой способ формирования однослойных корпусов исключает проведение доводочных операций и начинается с изготовления охватывающих форм (матрицы) из деревянных реек или (и) фанерной облицовки. Поверхность формы гладко шлифуется песком и покрывается либо тонким слоем материала из стеклопластика, либо другим подходящим составом. Такие формы оказались пригодными для длительного неоднократного применения, хотя их конструкция не считается удовлетворительной для массового производства. Недорогой процесс разового изготовления корпусов со слоистой структурой может сопровождаться потерей формы . Легкий каркас конструируется из дерева и имеет ряд близко располонгенных шаблонов для определения формы и размеров корпуса. Полоски материала пенозаполнителя легко прибиваются гвоздями к шаблонам и покрываются слоем стеклопластика требуемой толщины. Каркас и шаблоны затем снимаются, после чего другая сторона покрывается слоем стеклопластика. Эта технология пригодна для обработки как внешних, так и внутренних поверхностей. Ее преимущество заключается в том, что для повышения прочности связи слои стеклопластика укладываются непосредственно на сердцевину панели. Недостатками этой системы являются необходимость переворачивания детали для нанесения второго слоя и проведение окончательной обработки поверхностного слоя.  [c.249]

Упрочненный бетон был первым материалом, примененным во Франции Д. Л. Ламботом в 1844 г. в качестве материала корпусов для небольших гребных лодок. ПозД-нее он был использован для изготовления корпусов нескольких больших судов, построенных в Великобритании и США в, течение первой мировой войны. Он не рассматривался как подходящий материал для корпусов до начала 40-х годов, когда Пьер Луиджи Нерви использовал новый тип и характер распределения стального упрочни-теля. Этот новый материал был назван им ферроцемеитом. Он со-  [c.255]

Нерви [19, 20] показал, что при высоком массовом содержании упрочнителя и его равномерном распределении можно получить водонепроницаемый однородный материал с механическими свойствами, отличными от свойств бетона, упрочненного обычным способом, обладающий высоким уровнем упругости и сопротивлением растрескиванию. Нерви провел ударные испытания железобетонных плит толщиной до 6,3 см. Результаты показали, что при ударах появляются только трещины в цементе и происходит деформация упрочнителя, но не образуется отверстий. Были проведены испытания с целью установления оптимального соотношения между размером ячеек стальной сетки и составом раствора для по.лучения максимальной податливости материала без растрескивания. В 1943 г. Итальянское военно-морское ведомство утвердило железобетон в качестве материала для корпусов. После второй мировой войны в Италии из железобетона были построены различные суда, в том числе и 165-тонная моторная яхта и 12-метровое двухмачтовое судно, которые функционируют и в настоящее время. Из-за консерватизма в судостроительной промышленности железобетоны широко не использовались в качестве строительного материала для изготовления корпусов вплоть до 1959 г., когда они снова были применены в Великобритании для изготовления корпусов прогулочных лодок. При этом был несколько изменен состав материала, что обусловило интерес к этому материалу со стороны новозеландских фирм и некоторых других стран. До настоящего времени применение железобетонов как материалов для строительства судов ограничивалось в основном корпусами из-за того, что изготовители должны были иметь собственные упрочняющие системы, разработанные технологические процессы изготовления и замешивания бетона. Информация по железобетонам и их применению была недостаточна.  [c.256]

Кроме того, изготовление корпусов судов из железобетона обеспечивает отсутствие загрязнения или запахов, влагопогло-щения достаточно хорошие изоляционные свойства по сравнению с металлами легкость проведения ремонтных работ отсутствие течи в отличие от деревянных или стальных корпусов. В состав бетона можно ввести ингибиторы коррозии, а арматуру защитить антикоррозионным покрытием. Прочность железобетонных конструкций со временем возрастает.  [c.258]

Создание в последнее время свариваемых коррозионно-устойчивых алюминиевых сплавов привело к резкому расширению их применения в кораблестроении при изготовлении корпусов, надстроек, трубопроводов и др. Требованиям кораблестроения лучше всего удовлетворяют А] — Mg-сплавы. Рекомендуется применять сплавы с содержанием магния до 6%. При более высоком его содержании коррозионная устойчивость сплава понижается. Поэтому в настоящее время находят применение сплавы АМг5 и АМг61. Кроме А1 — Mg-сплавов используются также сплавы АД1 и АМц. Они обладают высокой коррозионной устойчивостью и пластичностью, но имеют низкие прочностные показатели. Из алюминия марки АД1 изделия изготавливают методом холодной штамповки. Сплав АМгЗ с повышенным содержанием кремния пригоден для изготовления конструкций, работающих при температурах до 150°С. Коррозионная устойчивость несвариваемого сплава Д16 в морской воде неудовлетворительна. Требованиям кораблестроения по коррозионной устойчивости в морской воде удовлетворяют и сплавы типа авиаль.  [c.126]



Смотреть страницы где упоминается термин Изготовление корпусов : [c.133]    [c.367]    [c.468]    [c.238]    [c.393]    [c.90]    [c.441]    [c.441]   
Смотреть главы в:

Основы инструментального производства  -> Изготовление корпусов

Автоматические линии для производства жестяной тары Издание 2  -> Изготовление корпусов



ПОИСК



Глава IV. Технология изготовления державок и корпусов

Изготовление державок и корпусов

Изготовление корпусов акустических систем

Изготовление корпусов аппаратов

Изготовление корпусов для наплавного инструмента

Изготовление корпусов концевого инструмента

Изготовление корпусов насадного инструмента

Изготовление корпусов фрез с запрессованными быстро7 режущими пластинками

Изготовление корпусом 1 сборка и сварка на плаву

Изготовление корпусом судом

Изготовление корпусом судом плоскостные секции

Изготовление корпусом судом раздельные секции е прогибью

Изготовление корпусом судом сборка и сварка в сухом доке

Изготовление корпусом судом сборка и сварка на стапеле

Изготовление корпусом судом схема разбивки корпуса на элементы, секции и блоки

Изготовление негабаритных конструкций корпусов цементных печей методом временного деформирования

Корпус

Корпусообразующие агрегаты для изготовления корпусов жестяной тары

Металлы для изготовления корпусов клапанов и цилиндров, обойм и крепежа. Допускаемые напряжения

О выборе сварочных материалов для многослойных соединений, применяемых при изготовлении рулонированного корпуса реактора гидрокрекинга

Поковки штампованные баллонов высокого корпусов снарядных — Изготовление

Поковки штампованные баллонов высокого корпусов форсунок — Изготовление

Способы изготовления корпусов

Стали для изготовления корпусов инструментов

Технология изготовления рабочего сложного тонкостенного герметичного корпуса



© 2025 Mash-xxl.info Реклама на сайте