Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дисперсионное твердение

Следовательно, состав стали и технология контролируемой прокатки обеспечивают получение мелкого зерна и дисперсионного твердения. Комплекс свойств близок к тому, какой получается при термическом улучшении, однако контролируемой прокаткой это достигается более простыми средствами.  [c.402]

Поясним это схемой, приведенной на рис. 345. Для сплава С/ закалкой с температуры зак получаем раствор с пересыщением, равным при комнатной и ДВг при рабочей температурах. В результате пересыщения произойдет дисперсионное твердение, эффект которого в смысле упрочнения может быть весьма различен в зависимости от типа сплава и степени развития процесса распада .  [c.461]


Термическая обработка этих сталей заключается в закалке при 1050— 1100°С в воде и отпуске —старении при 600—750 С. Этот отпуск — старение вызывает повышение твердости вследствие дисперсионного твердения избыточные фазы при старении выделяются преимущественно по границам зерен (рис. 350).  [c.471]

Дисперсионное твердение 569 Дисперсные материалы 635 Диссоциация 318  [c.643]

Влияние термической обработки на жаропрочность сплавов происходит в результате дисперсионного твердения. Дисперсионное твердение связано со старением пересыщенных твердых растворов, сопровождающимся выделением мелкодисперсных включений упрочняющих фаз (карбидов, нитридов). Эти упрочняющие фазы присутствуют как в виде раздробленных крупных частиц по границам зерен, так и в виде равномерно рассеянных внутри зерен мельчайших частичек (рис. 13.5), повышающих сопротивление пластической деформации при высоких температурах, т. е. повышающих жаропрочность.  [c.202]

Упрочнение жаропрочных аустенитных сталей осуществляется в результате дисперсионного твердения. Для этого они подвергаются термической обработке, состоящей из закалки на аустенит и последующего длительного старения при 700—750° С.  [c.210]

Однако если первые три стадии процесса приводят к упрочнению сплава (так называемому дисперсионному твердению), то четвертая стадия (коагуляция дисперсных частиц) связана со снижением твердости (рис. 13.13).  [c.213]

Упрочнение жаропрочных сплавов на основе N1 является результатом дисперсионного твердения после термической обработки (закалки для получения однородного твердого раствора легирующих элементов в N1 и последующего длительного старения при высоких температурах 700—800° С) (рис. 13.14).  [c.215]

Диффузией называется закономерное перемещение атомов элемента в кристаллической решетке металла. Процессы диффузии лежат в основе многих превращений, наблюдающихся в металлах и сплавах (рост зерна, полиморфное превращение, отдых и рекристаллизация, гомогенизирующая термическая обработка, дисперсионное твердение, химико-термическая обработка, спекание металлических порошков, сварка давлением и др.).  [c.52]

Так как 0-фаза в начальной стадии превращения образуется Б дисперсном состоянии, то связанный с этим эффект упрочнения называется дисперсионным твердением.  [c.111]

Одним из видов термической обработки сплавов является отпуск стали и дисперсионное твердение.  [c.121]


Дисперсионное твердение. Этот вид термической обработки часто называется старением. Оно сопровождается процессом выделения дисперсных частиц из пересыщенного твердого раствора, у сплавов, ранее прошедших закалку, при их нагреве. Дисперсионное твердение наблюдается у сплавов с ограниченной растворимостью легирующих элементов в -твердом растворе (см.рис. 72) после закалки сплава с концентрацией элемента точки 4 от температуры, несколько превышающей точку 3. Для того чтобы вызвать дисперсионное твердение, закаленный сплав нагревают до температуры, не превышающей предельную температуру полной растворимости легирующего элемента в твердом растворе.  [c.124]

Дисперсионное твердение применяется для сплавов на основе железа, никеля, титана, молибдена и других металлов, с целью придания последним специальных физико-химических свойств. В частности, этот вид термической обработки нашел широкое применение при производстве постоянных магнитов, поскольку она способствует значительному увеличению коэрцитивной силы и магнитной энергии магнитов.  [c.124]

Процесс превращения при дисперсионном твердении принципиально не отличается от процессов при отпуске закаленной стали он является более общим случаем разложения пересыщенного твердого раствора.  [c.124]

Выделяющейся фазой, вызывающей дисперсионное твердение, может быть карбид или нитрид, интерметаллическое соединение, твердый р аствор легирующего элемента в железе, имеющий другую концентрацию, или какая-либо фаза сложного состава.  [c.124]

При дисперсионном твердении предварительно закаленного сплава из однофазного твердого раствора (при наличии линии ограниченной растворимости) выделяется  [c.218]

Неверно называть отпуск закаленных сплавов, способных к дисперсионному твердению , старению , поскольку при этом механические свойства улучшаются термин облагораживание правилен.  [c.11]

Сплавы на основе кобальта, содержащие 12% тантала (или 8—10% ниобия), способны к дисперсионному твердению. Они отличаются высокой прочностью при растяжении и сопротивлением ползучести при высоких температурах.  [c.513]

Дисперсные фазы в сплавах также препятствуют движению дислокаций. Механизм упрочнения в результате дисперсионного твердения рассмотрен в ряде работ [8—11 и др.]. Согласно представлениям Мотта 19], частицы создают внутренние напряжения в матрице, которые оказывают сопротивление движению дислокаций. Важным упрочняющим фактором при этом является степень дисперсности частиц, на чем мы еще остановимся ниже.  [c.13]

Количественные расчеты эффекта упрочнения при наличии дисперсной фазы не проводились, но, согласно экспериментальным данным, предел текучести в результате выпадения дисперсной фазы существенно повышается, при этом существует критическая степень дисперсности фазы, соответствующая максимальному упрочнению. Упрочнение сплава при дисперсионном твердении достигает максимума при расстоянии между дисперсными частицами порядка 1000 А и их размере 50— 200 А [11]. Важно при этом получить равномерное распределение дисперсной фазы в матрице, что будет способствовать более однородному развитию деформационных процессов.  [c.15]

Одним из главнейших факторов, приводящих к упрочнению стареющих сплавов ряда цветных металлов, является выпадение в процессе старения мелкодисперсных выделений второй фазы (после закалки). Это явление получило название дисперсионного твердения. В процессе выпадения второй фазы сопротивляемость пластическому течению сначала растет с увеличением размера выделений, а затем начинает снижаться. Максимум упрочнения при этом в большинстве случаев соответствует среднему расстоянию между частицами около 1000 А [11]. Наиболее ярким примером сплавов, обнаруживающих дисперсионное твердение, являются алюминиевые сплавы. У этих сплавов эффект упрочнения зависит главным образом от размера дисперсных частиц. Влияние этого фактора было рассмотрено в гл. I при анализе структурных факторов, вызывающих упроч нение металлов.  [c.94]


Таким образом, процесс дисперсионного твердения в закаленных и затем деформированных сплавах протекает более интенсивно, чем в недеформированных сплавах, вследствие чего механические свойства, в особенности предел текучести, повышаются [150—154]. Ускорение процессов выделения упрочняющих фаз из твердого раствора в результате предварительной пластической деформации вполне объяснимо, если учесть, что дислокации могут являться центрами образования частиц дисперсной фазы [153], а так как в результате пластической деформации число (плотность) дислокаций растет, то, следовательно, увеличивается и число центров зарождения второй фазы. В этих условиях энергоемкость сплава после старения (при режиме, соответствующем, максимальному упрочнению) должна существенно возрастать, так как увеличивается однородность поглощения энергии.  [c.96]

Малые реле используются в электрических схемах самолетов и в ряде других случаев, когда необходима очень высокая надежность. Для защиты от загрязнений и органических паров реле помещают в герметичный металлический корпус. Во многих таких реле материалом контактов и пружин служит серебро с 0,3% магния и 0,25% никеля. Для получения этого материала заготовке придают необходимую форму и подвергают дисперсионному твердению путем нагрева до 725 °С в окислительной атмосфере. Продолжительность процесса определяется временем окисления магния и никеля, после термообработки пружины свободны от термических напряжений. В ряде случаев конец пружины раздваивают для увеличения площади соприкосновения и надежности схемы.  [c.428]

П — прессование, С -- спекание, Щэ — пропитка, Т — термообработка (дисперсионное твердение).  [c.436]

Естественно, упрочнение сплава вследствие дисперсионного твердения повышает прочность в то же время перестарива-ние сплава, т. е. его разупрочнение вследствие коагуляции избыточной фазы снижает жаропрочность.  [c.461]

Старение охватывае,т все процессы, происходящие в пересыщенном твердом растворе, — процессы, подготавливающие выделение, и непосредственно процессы выделения. Превращение, при котором происходят только процессы выделения, называется дисперсионным твердением (без сложных подгото- птрльпых процессов, о которых речь идет дальше).  [c.569]

Область уфазы выклинивается при 6,5% W. При содержании от 6 до 32% W сплавы способны к дисперсионному твердению.  [c.157]

Современными методами легирования (т.е. внесения в решетку чужеродных атомов), создающими всякого рода несовершенства и искажения кристаллической решетки, являются методы создания препятствий для свободного перемещения дислокаций (блокирюва-ния дислокаций). К данной технологии относятся способы образования структур с так называемыми упрочняющими фазами, вызывающими дисперсионное твердение, и др. Известны следующие методы п]юизводства дисперсионно-упрочненных сплавов порошковые методы, методы взаимодействия твердого металла с газовой средой (метод окисления и азотирования) и металлургические методы- (плавка и легирование тугоплавкими металлами).  [c.27]

Группа элементов (хром, молибден, вольфрам, ниобий, титан, алюминий и ванадий) наряду с растворением в а- или у-железе образует соединения с углеродом, железом и другими элементами. Эти соединения, имеющие малую скорость коагуляции и обладающие термической стойкостью, способны сохранять механические свойства сплавов при высоких температурах в течение продолжительного времени. Кроме того, обладая ограниченной рас1Воримо-стью в твердом растворе, они участвуют в процессах термической обработки, обеспечивая дисперсионное твердение сплавов.  [c.50]

W и Mo в присутствии Сг связывают углерод в специальные трудно-коагуяируемые при отпуске карбиды типа М С, МС и задерживают распад мартенсита. Выделение дисперсных карбидов, которое происходит при повышенных температурах отпуска (500.. 600 "С), вызывает дисперсионное твердение мартенсита. При отпуске ванадий, выделяясь в виде карбидов, усиливает дисперсионное твердение.  [c.108]

Высокая коэрцитивная сила в результате дисперсионного твердения достигается только в сплавах систем Fe—Мо и Fe—W, так как только в этих системах старение происходит без образования зон Гинье—Престона. Однако старение сплавов системы Fe—W приводит к получению коэрцитивной силы в 2 раза меньшей по сравнению со сплавами системы Fe—Мо.  [c.218]

Высококоэрцитивное состояние таких сплавов обусловливается механизмом дисперсионного твердения (иногда такие сплавы называются сплавами дисперсионного твердения). При высоких темпера турах (1200—1300 °С) растворимость элементов неограничена и Fe—Ni—Al-сплавы находятся в однородном состоянии (а-фаза). При медленном охлаждении до определенной температуры происходит дисперсионный распад равновесной фазы на две (а и а ) фазы, причем а -фаза по своему составу близка к чистому железу и является сильномагнитной, другая фаза состоит из Ni—А1 и является слабомагнитной. Таким образом, сильномагнитная а -фаза в виде однодоменных включений распределена в немагнитной  [c.106]

Сплавы на медной основе способны к дисперсионному твердению и пред-можеиы для контактов.  [c.490]

Сплавы называют изотропными, так как их магнитные свойства одинаковы, независимо от направления намагничивания. Основными материалами этой группы являются сплавы на основе алюминия, никеля, меди и железа. Эти сплавы отличаются высокой твердостью и хрупкостью, даже в горячем состоянии они не поддаются ковке и прокатке, магниты из них изготовляют литьем или прессованием из порошков. Получение высокой коэрцитивной силы связано с механизмом дисперсионного твердения. При определенных условиях охлаждения сплава появляются две фазы слабомагнптный твердый раствор железа и алюминия (Р -фаза) и однодоменные частицы почти  [c.264]


Смотреть страницы где упоминается термин Дисперсионное твердение : [c.394]    [c.394]    [c.461]    [c.463]    [c.470]    [c.109]    [c.302]    [c.307]    [c.354]    [c.159]    [c.73]    [c.513]    [c.25]    [c.167]    [c.121]    [c.84]   
Металловедение (1978) -- [ c.569 ]

Тепловая микроскопия материалов (1976) -- [ c.228 ]

Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.245 ]

Инструментальные стали и их термическая обработка Справочник (1982) -- [ c.26 , c.109 , c.201 ]

Высокомарганцовистые стали и сплавы (1988) -- [ c.3 , c.27 , c.230 ]

Физическое металловедение Вып II (1968) -- [ c.299 ]

Теория сварочных процессов Издание 2 (1976) -- [ c.321 ]

Металловедение и термическая обработка (1956) -- [ c.379 ]

Металловедение Издание 4 1963 (1963) -- [ c.399 ]

Металловедение Издание 4 1966 (1966) -- [ c.422 ]



ПОИСК



Влияние легирования на процессы при отпуске и на дисперсионное твердение

Дисперсионное твердение (старение) сплавов на никелевой основе

Дисперсионное твердение (старение) сплавов на основе Со

Дисперсионное твердение также Старение

Железо-никель-алюминиевые нековкие сплавы дисперсионного твердения — литые магниты

Изучение дисперсионного твердения металлов и сплавов

Нержавеющие стали с дисперсионным твердением

Превращения при нагреве закаленной стали (отпуск стали). Дисперсионное твердение

Сплавы дисперсионного твердения

Твердение

Явления предвыделения и дисперсионное твердение



© 2025 Mash-xxl.info Реклама на сайте