Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнениям задачи теории упругости

Введенные выше потенциалы позволяют решение основных краевых задач теории упругости свести к интегральным уравнениям второго рода. Начнем с первой основной задачи. Пусть для упругого тела, занимающего область D, ограниченную поверхностью S, требуется определить смещения, предельные значения которых будут принимать заданные значения iF (< ) (см. (1.1) гл. III). Будем разыскивать смещения в виде обобщенного упругого потенциала двойного слоя (1.8). Тогда в соответствии с формулой (1.21) приходим к интегральным уравнениям  [c.557]


Сделаем несколько замечаний общего порядка [27]. Выше были рассмотрены вопросы решения основных краевых задач теории упругости на основе представления смещений в виде соответствующих потенциалов. Получены сингулярные интегральные уравнения и установлены условия их разрешимости в предположении, что граничная поверхность принадлежит классу поверхностей Ляпунова, а правая часть —классу Г. — Л. В этом случае и решение принадлежит классу Г. — Л.  [c.569]

Александров А. Я- Решение основных трехмерных задач теории упругости для тел произвольной формы путем численной реализации метода интегральных уравнений. — ДАН СССР, 1973, т. 208, № 2.  [c.677]

Для рассматриваемого объема У, находящегося в равновесии и ограниченного поверхностью L + S, можно поставить вторую основную краевую задачу теории упругости [11] найти решение системы уравнений  [c.63]

Получены решения сингулярных интегральных уравнений основных антиплоских задач теории упругости для конечной или бесконечной области, ограниченной круговым контуром. Эти решения  [c.215]

При подстановке функции F (2), выражающейся соотношениями (VI.178), (VI.179), (VI.181), (VI.182), (VI.188) и (VI.189), в равенства (VI.27) и (VI.28) найдем сингулярные интегральные уравнения основных антиплоских задач теории упругости для конечной или бесконечной области с круговой границей, ослабленной системой криволинейных разрезов. В частности, если трещина размещена на прямой, проходящей через центр граничной окружности, такие задачи приводятся к интегральным уравнениям [2221 ь  [c.219]

Здесь а = — значение на границе единичного круга, / (0), (5(0)—функции нагрузок и перемещений на той же границе. Уравнение (11) представляет собой граничное условие первой основной краевой задачи теории упругости, уравнение (10) — граничное условие второй основной задачи. Условия (10) и (11) можно представить одной формулой  [c.371]

При решении упругопластических задач в качестве нулевого приближения используется решение задач в упругой области, поэтому в данном параграфе приводятся основные уравнения линейной теории упругости и методы их решения.  [c.73]

Кроме того, получены интегральные уравнения первого рода для решения первой и второй основных осесимметричных задач теории упругости.  [c.49]

Механическая и математическая постановка задачи о кручении тела вращения. При рассмотрении задачи об осесимметричной деформации тела вращения в цилиндрической системе координат г, ф, г основные уравнения линейной теории упругости распадаются на две независимые системы. Первая система служит для определения перемещений и и т и напряжений о,, Ог, и Гп в случае, когда тело вращения, деформируясь, не скручивается. Вторая система служит для определения перемещения V и касательных напряжений Тг и Гщ в случае чистого кручения тел вращения.  [c.246]


В результате подстановки в условия (3.1) и (3.2) граничных значений функций Фо(2) и Ро(2) для функций Ф(2), Ч (г) найдены аналогичные условия, ио с другими правыми частями 1) и РгО), зависящими линейно от функции й(<). Эти уравнения представляют собой граничные условия основной смешанной задачи теории упругости, и ее решение может быть представлено в виде (Н. И. Мусхелишвили [44])  [c.434]

Предлагаемая книга посвящена применению методов потенциала к основным граничным задачам теории упругости. Исследования на эту тему занимали автора и раньше [13 а, г, е], но настоящая работа отличается от прежних тем, что в ней впервые, наряду с однородными телами, рассматриваются также кусочно-неоднородные и доказываются теоремы существования для основных граничных задач таких тел. Второй особенностью книги является построение всей теории граничных задач на базе теории сингулярных интегральных уравнений. Это позволило, с одной стороны, расширить круг исследуемых граничных задач (контактные задачи, смешанные задачи) и, с другой стороны, обнаружить новые возможности метода При точном и приближенном решении многих задач Наконец, третья особенность книги заключается в том, что в ней впервые излагаются два новых способа приближенного решения граничных задач.  [c.7]

Здесь мы распространим модель Зоммерфельда, а затем и наше доказательство единственности и существования на основные граничные задачи теории упругости [13г]. Рассмотрим сначала простейший случай бесконечное пространство, подверженное воздействию точечно-сосредоточенной силы. Мы знаем, что в этом случае решение уравнения (1.1 ) выражается матрицей фундаментальных решений Г(аг, у). При построении этой матрицы с помощью формул (1.28) из двух теоретически равноправных знаков в показателе степени в выражении  [c.59]

Вопросам усреднения уравнений с частными производными и их приложениям посвящена обширная литература. Настоящая книга почти не имеет пересечений с другими монографиями, в которых излагаются задачи усреднения дифференциальных операторов. Особое внимание в ней обращено на задачи, связанные с линейной стационарной системой теории упругости. Поэтому для удобства читателя первая глава книги содержит материал, относящийся к исследованию стационарной системы теории упругости. В ней рассматриваются вопросы существования и единственности решений основных краевых задач теории упругости, неравенства Корна и их обобщения, априорные оценки решений и их свойства, краевые задачи в так называемых перфорированных областях и свойства их решений, а также приводятся некоторые вспомогательные сведения из функционального анализа. Все эти результаты используются в последующих главах, многие из них излагаются впервые.  [c.6]

При решении плоской задачи теории упругости в напряжениях основные уравнения имеют вид  [c.134]

Одним из эффективных численных методов решения задач теории упругости и пластичности является метод конечных разностей. Идея этого метода состоит в замене основных дифференциальных уравнений задачи уравнениями в конечных разностях. При этом задача сводится к решению системы алгебраических уравнений.  [c.144]

Основные уравнения плоской задачи теории упругости в декартовых координатах, выраженные через функции напряжений, имеют вид  [c.144]

Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений при заданных граничных условиях, не всегда возможен. Обратный метод, примененный в гл. 7 для плоских задач, часто не соответствует практической постановке задачи. Сен-Венаном был предложен так называемый полуобратный метод решения задач теории упругости, который заключается в том, что часть перемещений и напряжений задается, а остальные неизвестные определяются из уравнений теории упругости при заданных граничных условиях. Полуобратный метод не является общим. Однако он оказался одним из самых эффективных методов решения задач теории упругости.  [c.172]


Для того чтобы разобраться в рассуждениях и определениях, относящихся к задачам теории упругости в наиболее общей постановке, иллюстрируем основные идеи на примере более простых задач —для уравнения Лапласа и Пуассона в плоских и трехмерных областях.  [c.86]

Приведение основных задач теории упругости к интегральным уравнениям  [c.98]

Другой тип интегральных уравнений, решение которых эквивалентно решению основных задач теории упругости, получается на основании теории потенциала. Напомним кратко основные идеи.  [c.99]

Все задачи теории упругости основываются на решении приведенных систем уравнений. Если заданы все внешние сильи приложенные к телу, и требуется определить напряжения, деформации и перемещения, такую задачу называют прямой. Она. решается интегрированием системы уравнений (1.6), (1.9), (1.11),. (1.16). Если заданы перемещения, деформации или напряжения и требуется определить все остальные величины, входящие в систему основных зависимостей теории упругости, в том числе и силы, задачу называют обратной. Эта задача решается особенно просто, если заданы перемещения и требуется определить все остальное. В этом случае деформации находят из зависимостей (1.9) простым дифференцированием. Условия совместности деформаций (1.11), (1.12) будут при этом всегда удовлетворены. Для определения напряжений в теле используют зависимости (1.21) и (1.10), на поверхности тела — уравнения (1.3).  [c.21]

На практике обычно встречаются с прямой задачей теории упругости, общего метода решения которой пока не получено, но найден ряд частных решений путем ограничения области исследования. При решении некоторых из таких частных задач бывает удобно принимать за основные неизвестные компоненты напряжений, так как они проще связаны с нагрузкой тела, чем другие неизвестные, входящие в систему основных уравнений теории упругости. При решении других задач удобнее принимать за основные неизвестные перемещения, так как этих неизвестны с меньше (всего три, а не шесть). В соответствии с этим различают две основные схемы решения прямой задачи в одной разыскивают шесть компонентов напряжений, в другой — перемещения.  [c.21]

Получение решения общего уравнения (1.26), отвечающего граничным условиям для напряжений или перемещений — основная задача теории упругости. Однако найти такое рещение обще системы уравнений часто оказывается сложным. Это вынуждает вводить во многих практически важных задачах ряд упрощающих предположении распределения напряжений или деформаций.  [c.25]

Помимо двух основных рассмотренных методов решения задач теории упругости в напряжениях и в перемещениях часто используется смешанная форма решения, когда разрешающие уравнения составляются частично относительно перемещений, а частично относительно напряжений. Такой прием рассмотрим ниже в задаче расчета оболочек (см. гл. 7).  [c.46]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]

Теория сингулярных интегральных уравнений переносится на системы, причем в этом случае важнейшими понятиями становятся понятия о символической матрице и символическом определителе (составленных из символов каждого элемента). На системы обобщается установленный выще результат о возможности левой регуляризации, причем условием такой регуляризации является неравенство символического определителя нулю. В общем случае, правда, это условие не оказывается достаточным. Установлены [35], однако, некоторые частные виды систем сингулярных уравнений, для которых это условие достаточно. К таковым, например, относятся системы, для которых символическая матрица эрмитова (ац = —а,,). Именно этот случай и имеет место в сингулярных интегральных уравнениях, соответствующих основным пространственным задачам теории упругости.  [c.62]


В последнее время все более широкое распространение в теории упругости получает метод граничных интегральных уравнений (МГИУ). Эффективность метода позволяет применить его и для решения задач механики разрушения. Сущность этого метода заключается в сведении соответствующей задачи теории упругости к решению интегрального уравнения, а основное его преимущество по сравнению с другими численными методами состоит в том, что он понижает размерность задачи. Остановимся вкратце на выводе интегральных уравнений основных пространственных задач теории упругости и методах их решения [231]. Пусть S — некоторая достаточно гладкая замкнутая поверхность, а и D — области, расположенные внутри и вне ее ( ) = )+ + ) ). Если однородное изотропное упругое тело занимает конечный объем D , то задача называется внутренней. Если же тело занимает бесконечный объем D , то задача называется внешней. Требуется найти регулярное решение уравнения статики упругого тела (2.2)  [c.100]

Заметим, что важным обстоятельством для исследования сингулярных интегральных уравнений основных пространственных задач теории упругости является тот факт, что интегральные операторы в (3.6) и (3.8) являются взаимно сопряженными. С. Г. Мих-лин [59] доказал, что к полученным сингулярным интегральным уравнениям применимы альтернативы Фредгольма. В. Д. Купрад-зе [44] установил, что интегральные уравнения (3.6) и (3.8) имеют только действительные характеристические числа, по абсолютной величине меньшие единицы.  [c.296]

Xi/торянский Я. jM. Граничные интегральные и интегродифференциальные уравнения второго рода для основной смешанной задачи теории упругости // Прикладные проблемы прочности и пластичности Статика и динамика ла )ормируемых систем.— Горький, I98I.— С. 3—13.  [c.228]

Хуторянский Н. М. Граничные интегральные н интегро-дифферен-циальиые уравнения второго рода для основной смешанной задачи теории (упругости. — Прикладные проблемы прочности и пшастичност . Статика и динамика деформируемых систем. Всесоюз. межвуз. сб./Горьк. ун .т, 1 1, с. 3—13.  [c.290]

В большинстве рассмотренных работ, связанных с контактными задачами, предполагалось, что трение между штампом и упругим телом отсутствует. Значительно большие математические трудности представляет другой предельный случай, когда штамп и основание находятся в условиях сцепления (такая задача есть частный случай основной смешанной задачи теории упругости). В отличие от более простых смешанных задач, в этом случае дело сводится к отысканию двух гармонических в полупространстве функций с неразделенными краевыми условиями первого и второго рода. Впервые такая задача для кругового штампа была решена В. И. Моссаковским (1954) путем сведения ее к плоской задаче линейного сопряжения двух аналитических функций. Впоследствии Я. С. Уфлянд (1954, 1967) дал непосредственное решение этой задачи с помощью тороидальных координат и интегрального преобразования Мелера — Фока. В статье Б. Л. Абрамяна, Н. X. Арутюняна и А. А. Баблояна (1966) осуществлен еще один подход к той же задаче, основанный на использовании парных интегральных уравнений. Контактным задачам при наличии сцепления посвящена также работа В. И. Моссаковского (1963). Решение основной смешанной задачи теории упругости для полупространства с прямолинейной границей раздела краевых условий дано Я. С. Уфляндом (1957) с помощью интегрального преобразования Конторовича — Лебедева.  [c.36]

Решение первой основной задачи теории упругости будем искать в виде нотенциала двойного слоя. Тогда, учитывая граничное условие (14.2), получим от1госительно пеизвестпой функции q (/ ) нтпегральноо уравнение  [c.96]

Проверим, совместимы ли компоненты напряжений с основными уравнениями теории упругости. Ввиду того, что рассматриваемая задача также 5Гвляется простейшей задачей теории упругости, компоненты тензора напряжений (5.65) тождественно удовлетворяют соотношениям Бельтрами — Митчелла. Компоненты тензора напряжений (5.65) также удовлетворяют уравнениям упругого равновесия.  [c.96]

В предыдущем параграфе решение уравнений плоской теории упругости свелось к граничной задаче для бигармонического уравнения, которому удовлетворяет функция Эри. К решению уравнений плоской теории упругости могут быть с успехом применены также методы теории функций комплексного переменного. Впервые применение этих методов было дано в фундаментальных исследовани- ях Г. В. Колосова и Н. И. Мусхелишвили. Комплексное представление общего решения уравнений плоской теории упругости оказалось весьма плодотворным для эффективного решения основных задач плоской теории упругости.  [c.118]

В настоящей книге в соответствии с ее названием Приложение методов теории упругости и пластичности к решеник> инженерных задач авторы пытались в небольшом объеме привести основные сведения об исходных уравнениях и соотношениях теорий упругости и прикладной теории пластичности, сосредоточить основное внимание на рассмотрении их физического, геометрического или статического смысла, представить запись отдельных методов решения этих уравнений с помощьк> теории матриц, разобрать отдельные методы решения задач с ориентацией на привлечение быстродействующих цифровых машин и охарактеризовать результаты решения некоторых сложных, но практически интересных задач. Этот краткий курс имеет целью в наиболее доступной форме ознакомить читателя с основными принципами, методами и некоторыми задачами теории упругости и прикладной теории пластичности и подготовить его к самостоятельному изучению полных курсов и специальных исследований в отмеченных областях.  [c.4]


Смотреть страницы где упоминается термин Основные уравнениям задачи теории упругости : [c.94]    [c.170]    [c.121]    [c.279]    [c.37]    [c.9]    [c.99]    [c.44]    [c.495]    [c.381]   
Смотреть главы в:

Теория упругости  -> Основные уравнениям задачи теории упругости



ПОИСК



Вывод основных уравнений для тонких упругих покрытий (прослоек) в плоском случае путем асимптотического анализа точного решения задачи теории упругости для полосы

Задача основная

Задача упругости

Задачи теории упругости

О решении задачи теории упругости Основные уравнения теории упругости и способы их решения

Общие уравнения теории упругости и постановка основных задач. Важнейшие вариационные принципы

Основные задачи

Основные уравнения задачи

Основные уравнения плоской задачи теории упругости в комплексной форме

Основные уравнения теории упругост

Основные уравнения теории упругости

Основные уравнения теории упругости для плоской задачи

ПРИМЕНЕНИЕ ИНТЕГРАЛОВ ТИПА КОШИ К РЕШЕНИЮ ГРАНИЧНЫХ ЗАДАЧ ПЛОСКОЙ ТЕОРИИ УПРУГОСТИ ОБЩЕЕ РЕШЕНИЕ ОСНОВНЫХ ЗАДАЧ ДЛЯ ОБЛАСТЕЙ, ОГРАНИЧЕННЫХ ОДНИМ ЗАМКНУТЫМ КОНТУРОМ Приведение основных задач к функциональным уравнениям

Плоская задача теории упругости в полярных координатах Основные уравнения плоской задачи в полярнйх координатах

Постановка и методы решения задач теории упругоСводка основных уравнений, постановка задач теории упругости

Приведение основных задач теории упругости к интегральнв1м уравнениям

Сводка основных уравнений и их обзор. Прямая и обратная задачи теории упругости. Граничные условия. Два пути решения проблемы теории упругости

ТЕОРИЯ УПРУГОСТИ Основные уравнения теории упругости

Теории Уравнения

Теория упругости

Упругость Теория — см Теория упругости

Уравнение основное

Уравнение теории упругости основное

Уравнения Уравнения упругости

Уравнения основные

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости

Часть i. Матричная формулировка соотношений теории упругости и задач строительной механики стержневых систем Основные соотношения теории упругости Определения и уравнения



© 2025 Mash-xxl.info Реклама на сайте