Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О решении задачи теории упругости Основные уравнения теории упругости и способы их решения

Таким образом, МКЭ можно распространить и на динамические задачи теории упругости, где встречаются сложности в основном вычислительного характера. Эта ситуация типична для МКЭ — хотя способ решения ясен, но очень часто (например, в случае пространственных задач) порядок возникающих систем уравнений диктует свои ограничения, и далеко не всякая задача поддается решению.  [c.641]

Предлагаемая книга посвящена применению методов потенциала к основным граничным задачам теории упругости. Исследования на эту тему занимали автора и раньше [13 а, г, е], но настоящая работа отличается от прежних тем, что в ней впервые, наряду с однородными телами, рассматриваются также кусочно-неоднородные и доказываются теоремы существования для основных граничных задач таких тел. Второй особенностью книги является построение всей теории граничных задач на базе теории сингулярных интегральных уравнений. Это позволило, с одной стороны, расширить круг исследуемых граничных задач (контактные задачи, смешанные задачи) и, с другой стороны, обнаружить новые возможности метода При точном и приближенном решении многих задач Наконец, третья особенность книги заключается в том, что в ней впервые излагаются два новых способа приближенного решения граничных задач.  [c.7]


Слабое место теории Кирхгофа — Лява заключается в кажущемся противоречии исходных гипотез (1) при определении деформации по толщине оболочки предполагается, что поперечный сдвиг равен нулю, но в условиях равновесия сохраняются поперечные силы (2) при определении деформации по толщине оболочки предполагается, что длины отрезков на нормали к срединной поверхности в процессе деформации не изменяются, но в соотношениях упругости принимается = 0. В настоящее время эти противоречия научились в большинстве случаев устранять при помощи надлежащей интерпретации. Исключение представляют напряженные состояния с большим показателем изменяемости и напряженные состояния в многослойных оболочках с мягким заполнителем, где учет поперечного сдвига обязателен. Однако, поскольку исключения существуют, оправдан и пересмотр основных уравнений теории оболочек с помощью новых средств научного исследования. Например, численное решение на ЭВМ задач теории упругости, близких к задачам теории оболочек, вполне может выявить новые способы сведения и даже поставить проблему сведения в явной форме.  [c.231]

Известны многочисленные частные решения уравнения (8.29) каждое из которых соответствует определенному напряженному состоянию, удовлетворяющему уравнениям равновесия и совместности. Основная трудность при построении решения состоит в подборе функций, удовлетворяющих граничным условиям. Наложением их были решены многочисленные задачи теории упругости, имеющие большое практическое значение. Впрочем, следует заметить, что общего решения бигармонического уравнения не существует и отсутствуют также общие методы его решения. Существенное продвижение дает способ комплексных функций напряжений Колосова, который подробно обсуждается в 8.4.  [c.198]

О сходимости напряжений. В предыдущем изложении мы исходили из основной системы дифференциальных уравнений теории упругости в смещениях, и установленные при этом результаты, в частности сходимость построенных приближений, относятся к вектору смещения. Как известно, для приложения наибольший интерес представляют не смещения, а напряжения. В связи с этим важно заметить, что способы приближенного решения, которые указаны в этой главе, позволяют найти приближенные значения не только для вектора смещения, но и для напряжения. Покажем это, например, для второй внутренней задачи, рассмотренной в 31.  [c.462]


В работах [228, 229] излагаются основные концепции, лежащие в основе формулировок и методов решения плоских контактных задач статической теории упругости. Описаны две методики решения плоских контактных задач, одна из которых применима при отсутствии сил трения, а другая — при их наличии. Рассматривается контакт двух тел, причем каждое из них независимо. Учет условий контакта позволяет связать две системы уравнений в одну. Для нахождения зоны контакта нагрузка прикладывается малыми приращениями, после каждого из которых зоны сцепления и проскальзывания определяются итерационным способом. В созданном программном обеспечении использовались простейшие кусочно-постоянные граничные элементы. Предложенный алгоритм демонстрировался на ряде конкретных задач. Однако рассмотрение контакта только двух тел и использование граничных элементов низкого порядка аппроксимации вводит существенные ограничения на класс и точность рассматриваемых прикладных задач, на воз можность расчета НДС различных реальных конструкций.  [c.13]

В дискретных приближенных методах неизвестные функции с самого начала заменяются их значениями в отдельных точках. При этом различными способами получают прямые приближенные решения основных уравнений, и в процессе вычислений постоянно оперируют численными значениями основных переменных. Иногда в качестве недостатка этих методов указывают на то, что нет аналитического выражения ( формул ) зависимости переменных друг от друга, а получаются только численные значения искомых функций в определенных точках (поэтому эти методы называются также сеточными). При применении теории упругости к практическим задачам это обстоятельство часто не является помехой, так как обычно и без того граничные значения, напрнмер, нагрузки, действующей на элементы конструкций, известны по измерениям в конечном числе точек.  [c.128]

Ограничения математического анализа. Идеальная научная теория состоит из минимального количества аксиом (основных принципов и понятий), из которых решение любой задачи может быть получено формальной логикой, т. е. математически. Сейчас такая всеобъемлющая теория движения жидкости воплощена в уравнении неразрывности и общих уравнениях движения. К сожалению, сложность большинства явлений течения и пределы аналитических способностей человека ограничивают строгое применение этой теории только несколькими простыми случаями. Например, можно найти распределение давления в жидком теле, которое целиком вращается или испытывает ускорение иным способом пределом в этом случае будет гидростатическое распределение. Могут быть точно рассчитаны сопротивление ламинарного потока в однородной трубе или установившаяся скорость падения малого шара. Точно выражается и частота волн малой амплитуды под действием силы тяжести, капиллярности или упругости. Более сложные состояния потока могут быть подвергнуты теоретическому анализу лишь при игнорировании некоторыми не поддающимися описанию сторонами движения. В ряде случаев результаты имеют достаточную для инженерной практики точность. Однако часто, особенно для случая турбулентного движения, математические трудности становятся настолько значительными, что решение может быть получено только после чрезвычайного упрощения.  [c.6]

Для других случаев концентрации напряжений используются в основном приближенные способы, основанные на применении соответствующих кинематических гипотез или численных методов (метод уттругих решений, конечно-элементный метод, метод интегральных уравнений и др.). Однако указанные способы применяют в основном в исследовательских, а не инженерных целях, поскольку решение многих задач для различных режимов эксплуатации в случае статического, и особенно циклического нагружения конструкций требует значительного машинного времени и большого объема исходной информации. Получаемые при этом результаты примени.мы для конкретных конструкций, материала и уровня нагрузок. Практика инженерных расчетов базируется в основном на применении задач теорий упругости пластин, оболочек и стержней или на использовании результатов прямого экспериментального изучения местных напряжений и деформаций. Последнее, как известно, применяется для весьма ответственных машин и конструкций в силу сложности и трудоемкости экспериментов по анализу процессов эксплуатационного нагружения.  [c.69]


Как было показано ранее, задачу теории упругости для малых перемещений можно сформулировать вариационными методами, предположив существование трех функций Л, Ф, Y. Точные дифференциальные уравнения и граничные условия тогда получаются из условий стационарности общей потенциальной энергии или родственных функционалов. Однако одно из основных преимуществ вариационного исчисления — это его применимость для получения приближенных решений. Так называемый метод Релея — Ритца — один из лучших способов получения приближенных решений путем использования вариационното метода [2, 3, 12—17]. Проиллюстрируем метод Релея—Ритца двумя примерами.  [c.61]

Решение плоской задачи теории упругости зависит от двух координат и может быть выражено через две произвольные (с точки зрения выполнения уравнений равновесия и условий неразрывности) двухмерные гармонические функции, определяющиеся путем подчинения решения двум краевым условиям на плоском граничном контуре. То обстоятельство, что ортогональные преобразования координат на плоскости и теория двухмерных гармонических функций тесно связаны с теорией функций комплексного переменного, позволило разработать общий метод решения плоской задачи, основанный на аппарате теории аналитических функций (Г. В. Колосов [10], Н. И. Мусхелишвили [20] и его школа). Этот путь в принципе позволяет подойти к решению любой плоской задачи, но наиболее эффективен для односвязных и (в меньшей мере) для двухсвязных областей. Основная идея, которой при этом руководствуются, состоит в отображении рассматриваемой области на одну из канонических областей (на полуплоскость, круг единичного радиуса или круговое кольцо) с последующим использованием аппарата интегралов типа Коши для нахождения двух неизвестных функций по заданному краевому условию. Если ограничиться только односвязными областями (каковые по существу главным образом и рассматриваются [20], [27]), то можно обойтись и без аппарата интегралов типа Коши, оперируя лишь самыми элементарными представлениями теории аналитических фунщий. В нашей книге, носящей общий характер, мы даем только этот наиболее простой и в то же время достаточно эффективный способ, отсылая читателя за более полным и общим изло-  [c.292]

Анализируя описанные методы решения вариационного уравнения Лагранжа, приходим к заключению, что для расчета корпусных деталей машин следует применить методы приведения четырехмерной задачи теории упругости к двумерной и одномерной. Получаемые при том системы уравнений не встречают больших математических трудностей. Выбор аппроксимирующих функций будем производить в основном по способу Ритца, так Как заранее удовлетворить статическим или динамическим условиям на поверхности таких сложных пространственных конструкций, какими являются корпусные детали машин, не представляется возможным.  [c.23]

Смешанные задачи плоской теории упругости и теории изгиба пластинок. Как было уже упомянуто в 103 настоящей книги, Д. И. Шерман [17] дал способ решения основной смешанной плоской задачи теории упругости для многосвязной области. Г. Ф. Манджавидзе [1, 2] подробно исследовал сингулярное интегральное уравнение Д. И. Шермана, построенное для решения указанной задачи. Это же уравнение позволило Г. Ф. Манджавидзе [2] решить смешанную задачу изгиба нормально нагруженной тонкой изотропной пластинки, когда часть края пластинки заделана, а остальная — свободна. Если область, занятую пластинкой, можно отобразить конформно на круг при помощи полинома, то эту задачу, как и основную смешанную задачу (см. 127), можно решить эффективно. Это сделано в статьях М. Е. Карапетяна [1] и Станеску (Stanes u [1]).  [c.600]

А. С. Гиневским и Я. Е. Полонским в 1962 г. были опубликованы расчеты (по способу дискретных вихрей) решеток из двухпараметрических дужек с максимальным прогибом до 30% и его положением на 30—50% хорды. На основании результатов этих расчетов были получены полезные интерполяционные формулы для основных гидродинамических параметров решеток используемых в осевых вентиляторах и компрессорах. Несколько позже вихревой метод был запрограммирован и применен в практических расчетах решеток паровых турбин и стационарных газотурбинных двигателей (М. И. Жуковский, Н. И. Дураков и О. И. Новикова, 1963 В. М. Зеленин и В. А. Шилов, 1963). В теоретическом отношении и для реализации численных методов важны вопросы разрешимости уравнений, сходимости последовательных приближений и оценки точности решений. В теории гидродинамических решеток эти вопросы изучены еще недостаточно они более продвинуты в теории упругости в связи с близкими задачами о напряжениях в плоскости, ослабленной бесконечным рядом равных вырезов (Г. Н. Савин, 1939, 1951 С. Г. Михлин, 1949) и их двоякопериодической системой (Л. М. Куршин и Л. А. Фильштинский, 1961 Л. А. Филь-штинский, 1964).  [c.116]

Первые крупные исследования по общей теории упругих оболочек созревают к началу сороковых годов. Освоению и анализу теории оболочек способствовало применение ведущими учеными страны тензорной символики для записи основных соотношений теории. Уравнения совместности деформации впервые вывел А, Л. Гольденвейзер (1939) А, И. Лурье (1940) и А. Л. Гольденвейзер (1940) ввели в теорию оболочек функции напряжения, через которые определяются усилия и моменты, тождественно удовлетворяющие уравнениям равновесия. А, Н. Кильчевский (1940) указал способы построения теории оболочек и решения ее задач на основе теоремы о взаимности. Уравнения в перемещениях геометрически нелинейной теории были опубликованы X. М. Муштари (1939) — изложенный им вариант теории является обобщением упрощенной нелинейной теории пластинок Кармана на оболочки произвольного очертания.  [c.229]


Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]

При анализе колебаний станков используется аппарат случайных функций [60] правда, случайными считаются в основном лишь возмущения, а упругие системы станков опйсываются детерминированными уравнениями, поскольку определение коэффициентов этих уравнений опирается на детерминированные же методы, принятые в расчетах деталей машин. Наибольшее применение аппарат случайных функций получил при расчете виброизоляции машин [68]. В этом случае достаточно просто можно получйть экспериментальные статистические характеристики кинематических возмущений, создаваемых фундаментом, не искажен- ные еще упругой системо,й рассчитываемой машины, в частности системой станКа. Зная характеристики упругой системы станка, его реакцию на случайный сигнал определяют известными способами [63]. Перспективным является применение к динамическому расчету станков теории оптимальных процессов, которая уже используется при решении некоторых задач машиноведения [61 ].  [c.10]

В этой книге рассматривается совок пность всех гранича ных задач, описанных выше, от статических для однородных до динамических для кусочно-неоднородных упругих тел на основе теории потенциала и многомерных сингулярных интегральных уравнений, дается доказательство основных теорем существования и указывается эффективный приближенный способ их решения.  [c.11]


Смотреть страницы где упоминается термин О решении задачи теории упругости Основные уравнения теории упругости и способы их решения : [c.121]    [c.72]    [c.326]   
Смотреть главы в:

Основы теории упругости и пластичности  -> О решении задачи теории упругости Основные уравнения теории упругости и способы их решения



ПОИСК



Задача основная

Задача упругости

Задачи теории упругости

К упругих решений

Основные задачи

Основные уравнения задачи

Основные уравнения теории упругост

Основные уравнения теории упругости

Основные уравнения теории упругости и способы их решения

Основные уравнениям задачи теории упругости

Решение задачи упругости

Решение основное

ТЕОРИЯ УПРУГОСТИ Основные уравнения теории упругости

Теории Уравнения

Теория упругости

Упругость Теория — см Теория упругости

Уравнение основное

Уравнение теории упругости основное

Уравнения Уравнения упругости

Уравнения основные

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте