Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Б) Теорема о кинетическом моменте системы материальных точек

Б) Теорема о кинетическом моменте системы материальных точек.  [c.448]

Теорема об изменении кинетического момента системы материальных точек  [c.196]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]


Теорема об изменении кинетического момента. Пусть Vjy — скорость точки Pjy системы в инерциальной системе отсчета, а — ее радиус-вектор относительно начала координат (рис. 82). Возьмем произвольную точку А пространства, которая может и не совпадать с какой-либо материальной точкой системы во все время движения. Точка А может быть неподвижной, а может совершать произвольное движение обозначим va ее скорость в выбранной инерциальной системе отсчета. Пусть — радиус-вектор точки относительно точки А. Тогда кинетический момент системы относительно точки А вычисляется по формуле  [c.159]

На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]

Если на материальную точку действуют несколько сил, то на основании теоремы Вариньона в правых частях предыдущих уравнений нужно писать сумму (геометрическую) моментов всех этих сил относительно данного центра или сумму (алгебраическую) их моментов относительно данной оси. В случае системы материальных точек, кинетическим моментом системы относительно данной точки или данной оси называется главный момент количеств движения всех материальных точек системы относительно этой точки или этой оси. Следовательно, если обозначить кинетический момент системы относительно точки О (начала координат) через 0 , а кинетические моменты системы относительно координатных осей через 0 , Оу, 0 , то  [c.380]


Выведем законы сохранения кинетических моментов для системы, рассматривая материальную точку как механическую систему, у которой число точек равно единице. Естественно, что для одной материальной точки все действующие на нее силы являются внешними. Возможны следующие частные случаи теоремы об изменении кинетического момента системы.  [c.300]

В динамике точки ( 212 первого тома) рассматривалась теорема об изменении момента количества движения материальной точки. Теорема об изменении кинетического момента системы является дальнейшим обобщением этой теоремы динамики точки.  [c.62]

Теорема об изменении кинетического момента системы. Рассмотрим механическую систему, состояш,уго из п материальных точек. Теорема об изменении кинетического момента (5), доказанная нами для одной материальной точки, будет справедлива и для каждой из точек рассматриваемой системы. Следовательно, если мы выделим какую-нибудь точку системы с массой т , имеющую скорость то для нее будет иметь место равенство  [c.604]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

Г. Теорема Резаля. Пусть 5 — система отсчета (с началом в точке О) и Ко — главный векторный кинетический момент некоторой материальной системы, движущейся относительно 5. При ЭТОМ вектор Ко в общем случае изменяется по величине и направлению и геометрическая точка А — его конец — описывает при этом некоторую кривую Г, являющуюся годографом вектора Ко (рис. 60). Полагая  [c.173]

Так как, по предположению, связи допускают поворот твердого тела относительно прямой, определяемой ортом ез, то для системы материальных точек, образующих твердое тело, справедлива теорема об изменении проекции вектора кинетического момента  [c.185]

Мы получили запись теоремы об изменении кинетического момента системы производная по времени от кинетического момента системы свободных материальных точек равна сумме моментов всех внешних сил (главному моменту внешних сил).  [c.119]

ГЛАВА IX. ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ И ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОГО МОМЕНТА МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.145]

Теоремы об изменении количества движения и кинетического момента применительно к системам переменного состава. Рассмотрим в системе отсчета х, у, г (эта система может быть и неинерциальной) систему материальных точек, которые в момент  [c.110]

Теорема 5.3.5. (Изменение кинетической энергии системы переменного состава). Пусть связи идеальны, а дифференциалы действительных перемещений всех материальных точек, образующих в данный момент времени рассматриваемую систему переменного состава, принадлежат множеству виртуальных перемещений. Тогда кинетическая энергия Т системы переменного состава удовлетворяет уравнению  [c.415]

Из теоремы о вириале в ее общем виде (112) следует не только то, что материальные точки, связанные между собой силами, действующими по закону обратных квадратов, должны иметь кинетическую энергию, но и то, что кинетическая и потенциальная энергии такой системы всегда сравнимы по величине. Даже если часть материальных точек в начальный момент не движется, силы притяжения, значения которых обратно пропорциональны квадрату расстояния, сближают эти точки друг с другом, увеличивая как потенциальную, так и кинетическую энергии до тех пор, пока средняя кинетическая энергия не станет равной с обратным знаком половине средней потенциальной энергии. В приводимом ниже примере мы воспользуемся теорем ой. о вириале, чтобы оценить температуру внутри Солнца, представляющего собой, как почти все звезды, массу сжатого раскаленного газа.  [c.302]


ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОГО МОМЕНТА МАТЕРИАЛЬНОЙ ТОЧКИ И МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.598]

Теорема Делонэ-Бертрана. Рассмотрим систему материальных точек Ру = 1, 2,..., 7V) с идеальными обратимыми связями. Первоначально она покоится, но в некоторый момент внезапно приводится в движение заданной системой ударных импульсов 1 . В результате удара точка получает скорость а система приобретает кинетическую энергию Наложим теперь на систему новые дополнительные связи, также идеальные и обратимые. Тогда точки Р системы под действием тех же импульсов 1 приобретают, вообще говоря, другие скорости а система — кинетическую энергию  [c.451]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]

Изложению теоремы об изменении кинетического момента материальной системы в относительном движении предшествует изложение динамики относительного движения точки.  [c.71]

Основные теоремы динамики системы, к изложению которых мы переходим, представляют собой современный аппарат для изучения интегральных характеристик движения механических систем материальных точек. Особенно важное значение имеют следствия из основных теорем динамики системы, получаемые при некоторых предположениях о классах действующих сил и называемые обычно законами сохранения основных кинетических величин количества движения, кинетического момента и кинетической энергии.  [c.368]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рымя являются кол-во движения (см. И.чпульс), момент количестеа движения и кинетическая анергия, и О мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают свойства движения любой системы материальных точек и сплошной среды.  [c.127]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]


Согласно определению математического ротора усилие Р является приведенной силой физического ротора согласно уравнению (64). Точкой приведения силы Р является точка Шток 5 имеет массу Шц,, которая также является приведенной для данного физического ротора. Вал ротора служит звеном приведения момента сил М . В плоскости перемещения грузов имеются две системы координат с началами в точках О и От. Точка О может быть выбрана произвольно на оси вращения (оси Оу), точка 0 является точкой приведения силы Р, лежит на оси Оу и является одновременно вершиной профиля 3. Согласно схеме рис. 42 на рис. 43 ордината точки приведения силы Р в системе хОу обозначена Ь и изменяется от до Следовательно, координаты точки Ох в начальном положении в координатной системе хОу (О Ьх) оси х обеих систем параллельны. Обе системы вращаются вместе с ротором. Ротор имеет приведенный момент инерции, определяемый форл улой (62). Под моментом инерции У понимается некоторая постоянная величина, равная моменту инерции покоя изучаемого физического ротора. МомеНт инерции Д/ из формулы (62) может быть найден из анализа рис. 43. Любой элементарный механизм ротора имеет общий центр масс активных подвижных звеньев, перемещение которого, а также перемещение активных подвижных звеньев относительно этого центра определяет величину ДУ. В математическом роторе (см. рис. 43) активные звенья каждого элементарного механизма заменены одним центробежным грузом 1 (следовательно, число грузов в математическом роторе равно числу элементарных механизмов в роторе данного физического толкателя). Для такой замены необходимо, чтобы кинетическая энергия груза 1 в каждый момент времени равнялась кинетической энергии этих звеньев. Согласно теореме Кенига кинетическая энергия последних равна кинетической энергии массы, сосредоточенной в центре масс элементарного механизма, и сумме кинетических энергий всех материальных точек активных подвижных звеньев в движении относительно центра масс. Кинетическая энергия каждого центробежного груза (см. рис. 43) в его движении относительно корпуса 7  [c.119]

Теорема 5.2.3. (Об изменении кинетического момента в осях Кёнига). Если связи, наложенные на систему материальных точек, идеальны, допускают дифференциал вращения вокруг неподвижной оси L и, кроме того, допускают поступательное смещение системы по любому направлению в плоскости, перпендикулярной L, то в осях Кёнига производная по времени от кинетического момента относительно оси I, параллельной L и проходящей через центр масс системы, равна сумме моментов внешних активных сил относительно оси I, т.е.  [c.400]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

ТЕОРЕМА (Ирншоу система неподвижных точечных зарядов электрических, находящихся на конечных расстояниях друг от друга, не может быть устойчивой Карно термический КПД обратимого цикла Карно не зависит от природы рабочего тела и являегся функцией абсолютных температур нагревателя и холодильника Кастильяно частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы Кельвина сила (или градиент) будет больше в тех точках поля, где расстояние между соседними поверхностями уровня меньше Кенига кинетическая энергия системы равна сумме двух слагаемых — кинетической энергии поступательного движения центра инерции системы и кинетической энергии системы в ее движении относительно центра инерции Клеро с уменьшением радиуса параллели поверхности вращения увеличивается отклонение геодезической линии от меридиана Кориолнса абсолютное ускорение материальной точки рав1Ю векторной сумме переносного, относительного и кориолисова ускорений Лармора единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора орбитального магнитного момента электрона с некоторой угловой скоростью, зависящей от внешнего магнитного поля, вокруг оси, проходящей через ядро атома и параллельной вектору индукции магнитного поля Остроградского — Гаусса [для магнитного поля магнитный поток сквозь произвольную замкнутую поверхность равен нулю для электростатического поля <в вакууме поток напряженности его сквозь произвольную  [c.283]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]



Смотреть страницы где упоминается термин Б) Теорема о кинетическом моменте системы материальных точек : [c.240]    [c.133]    [c.179]    [c.173]   
Смотреть главы в:

Теоретическая механика  -> Б) Теорема о кинетическом моменте системы материальных точек



ПОИСК



Кинетическая системы

Кинетический момент системы материальных точек

Кинетический момент точки

Кинетический момент точки и системы

Материальная

Момент кинетический

Момент кинетический системы

Момент системы сил

Момент системы точек

Система материальная

Система материальных точек

Система точек

Теорема кинетических моментов

Теорема моментов

Теорема о кинетическом моменте систем

Теорема об изменении кинетического момента системы материальных точек

Теорема об изменении момента количества движения материальной точки и об изменении кинетического момента механической системы

Теорема системы

Теоремы об изменении кинетического момента материальной точки и механической системы

Точка материальная



© 2025 Mash-xxl.info Реклама на сайте