Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкоупругие среды линейные нелинейные

Из предыдущего следует, что если задача линейной теории вязкоупругости может быть решена точно, то соответствующая задача нелинейной теории вязкоупругости сводится к квадратурам. Этот факт легко прослеживается, например, на задаче о расширении сферической области в вязкоупругой среде, подчиняющейся кубичной теории вязкоупругости [33].  [c.333]

Многие полимерные материалы при повышенных напряжениях не следуют линейной модели вязкоупругой среды (1.42), (1.43) и проявляют физически нелинейные свойства. Применяемые для их описания различные аналитические модели подробно рассмотрены Москвитиным [188]. Здесь остановимся на некоторых из них.  [c.58]


Линейная теория вязкоупругости и термовязкоупругости как одна из моделей механики сплошной среды возникла давно, однако большое значение она приобрела в последнее время, главным образом в связи с созданием разнообразных полимерных материалов и пластмасс и их применением в различных областях народного хозяйства. Широкое развитие получили различные теоретические и экспериментальные исследования в области вязкоупругости, в том числе линейная и нелинейная теории деформирования вязкоупругих материалов.  [c.3]

Уравнения линейной и нелинейной теорий вязкоупругости удовлетворяются для полимерных материалов не совсем точно, так как свойства полимеров меняются во времени, Теории ползучести стареющих наследственных сред, развитые Н. X. Арутюняном [7] применительно к такому материалу, как бетон, могут быть перспективными и для полимерных материалов.  [c.40]

Дальнейшее обобщение линейной теории вязкоупругости состоит в переходе к нелинейным уравнениям вида (10.41) или (10.42), т. е. к соотношениям указанного вида при нелинейных операторах Р и R. Нелинейная теория вязкоупругостн позволяет получить достаточно хорошее описание ползучести бетона и полимеров при различных режимах, в том числе неизотермических. В то же время этой теорией не охватываются необратимые процессы, протекающие мгновенно (атермическая пластичность) такие явления, как было указано, характерны в первую очередь для металлов. Тела, обладающие упругостью, вязкостью и пластичностью, описываются теорией упруго-вязко-пластических сред. Реологические уравнения этой теории уже не могут быть представлены в виде (10.41) или (10.42) (даже при нелинейных операторах Р и R ) подобно тому, как соотношения между напряжениями и деформациями для упруго-пластического тела нельзя записать в виде конечных (функциональных) связей. В рамках упомянутой теории и следует искать описание поведения металлов при достаточно высоких температурах.  [c.754]

Влияние предварительного нагружения на динамические свойства материалов было показано на рис. 3.8. Во многих случаях, например для опор двигателя, этот эффект довольно важен, особенно когда требуется достичь хороших изолирующих характеристик при высоких частотах колебаний. Здесь также учитывается влияние температуры окружающей двигатель среды. Так, для того чтобы изготовить резиноподобные материалы с разнообразными изолирующими и демпфирующими характеристиками, необходимо изучить их свойства как функции динамических и статических деформаций. Однако, поскольку здесь возможно большое число комбинаций параметров, становится трудным организовать испытания материалов. С другой стороны, можно использовать подход, при котором влияние различных внешних условий можно разграничить так, что будет достаточно провести испытания заданного материала для определения как статических, так и динамических характеристик порознь, а затем воспользоваться аналитическими методами для оценки их совместного влияния. В работе [3.11] была предложена общая теория комбинированного линейного динамического и нелинейного статического поведения вязкоупругих материалов. Аналогичный подход, дающий более простые результаты и основанный на уравнении Муни — Ривлина [3.12, 3.13], обсуждается ниже. Сначала рассматривается нелинейное статическое представление на основе уравнения Муни — Ривлина, а затем оно распространяется на динамическое поведение  [c.124]


Первый основной закон термодинамики не накладывает каких-либо ограничений на определяюш,ие уравнения. Это же относится и к третьему закону. Второй основной закон термодинамики исключает процессы с отрицательным притоком энтропии. Это условие сужает класс допустимых уравнений состояния, однако не до желаемой степени. Более обещаюш,им здесь является принцип Онзагера [22], поскольку он относится к необратимым процессам и доставляет определенную информацию о направлении таких процессов, более точную, нежели второй основной закон. В самом деле, как было показано Био [1], принципа Онзагера достаточно для исследования некоторых проблем линейной вязкоупругости и установления так называемой вязкоупругой аналогии. К сожалению, однако, применение принципа Онзагера ограничивается только линейными задачами и поэтому не может дать результатов в более интересных случаях нелинейных моделей сплошных сред (неньютоновы жидкости, нелинейные вязкоупругие тела, вязкопластичные и пластичные тела и др.).  [c.9]

Автор книги знаком советскому читателю по русскому переводу небольшой монографии Теория линейной вязкоупругости ( Мир , 1965). Его новач книга посвящена распространению возмущений в нелинейно упругих сжимаемых и несжимаемых средах. Даио краткое изложение анализа больших деформаций и напряжений, определяющих уравнений и распространения ударных волн. Рассмотрены адиабатическая и язэнтропическая аппроксимации общей задачи и виды возможных разрывов в изотропных сжимаемых и несжимаемых средах. Последняя часть книги знакомит с влиянием теплопроводности на распространение воли.  [c.4]

Термореологически простые материалы. Результаты экспериментов на разнообразных вязкоупругих материалах позволяют выделить важный подкласс материалов с памятью, обычно называемых термореологически простыми материалами ). А именно среди аморфных высокополимеров, которые при заданной постоянной (во времени и в пространстве) температуре приближенно подчиняются законам линейной и нелинейной вязкоупругости, есть группа материалов, свойства которых меняются особенно просто при изменении температуры кривые, характеризующие зависимость свойств материала от времени при разных постоянных температурах, построенные в логарифмической шкале времени (по оси абсцисс откладывается 1п I), получаются друг из друга сдвигом. Это явление представляет собой основную характеристику термореологически простых материалов она позволяет установить отношение эквивалентности между температурой и 1п 1.  [c.397]


Смотреть страницы где упоминается термин Вязкоупругие среды линейные нелинейные : [c.10]   
Теория упругости и пластичности (2002) -- [ c.230 ]



ПОИСК



Вязкоупругие среды линейные

Вязкоупругость

Вязкоупругость линейная

Вязкоупругость нелинейная

Среда вязкоупругая

Среда нелинейная



© 2025 Mash-xxl.info Реклама на сайте