Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные соотношения линейной теории упругости

Напомним сначала основные соотношения линейной теории упругости, полученные в первой главе. Пусть Q е— открытая область в трехмерном евклидовом пространстве соответствующая начальному положению исследуемого деформируемого тела,  [c.54]

ОСНОВНЫЕ СООТНОШЕНИЯ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ  [c.124]

Основные соотношения линейной теории упругости........... 235  [c.8]

Основные соотношения линейной теории упругости  [c.235]


Основные соотношения линейной теории упругости для однородной изотропной среды  [c.26]

Основные соотношения линейной теории упругости и вязкоупругости для сжимаемых и несжимаемых материалов в конечно-элементной формулировке  [c.15]

В ЭТОЙ главе получим основные дифференциальные соотношения линейной теории упругости. Подробный вывод этих соотношений проводится в прямоугольной системе координат для двумерного случая. Этот случай в основном рассматривается в главах, в которых излагаются основы метода конечных элементов. Без вывода приведем также соотношения, которые обобщают результаты, полученные для двумерного случая, на трехмерные задачи. Обобщения на более частные случаи и снстемы координат отложим до глав, в которых рассматриваются соответствующие типы конечных элементов.  [c.107]

Рассматриваемая среда является линейной, т. е. в общем представлении функционала ( 19) сохраняется лишь один линейный функционал Применяя такое представление к де-виатору Оц и среднему давлению р, получим основные соотношения линейной теории вязко-упругости  [c.209]

Основные геометрические соотношения (1.17) линейной теории упругости в прямоугольных координатах в матричной форме имеют вид  [c.13]

Соотношения (1.4)-(1.6) являются основными динамическими уравнениями теории упругости при малых деформациях. Классическая линейная теория упругости соответствует случаю, когда 1Г( ) - положительно определенная квадратичная форма относительно компонент тензора . Например, для однородной, изотропной линейной упругой среды 1Г(е) имеет вид.  [c.7]

Основные соотношения для трехмерных элементов даются линейной теорией упругости. Рассматривая равновесие бесконечно малого элемента, имеем (для простоты объемные силы исключены)  [c.306]

Систему, в которой силы приняты линейными функциями от перемещений (из состояния равновесия) с по тоянными коэфициентами, можно по аналогии назвать упругой системой, так как такого рода соотношение обычно принимается за основной закон теории упругости. Постоянные можно назвать коэфициентами упругости или (по  [c.216]

В настоящей главе кратко приводятся основные сведения определяющие соотношения и уравнения, описывающие динамику поведения сплошных сред на основе линейной теории вязкоупругости и термовязкоупругости, при этом главное внимание уделяется средам, проявляющим мгновенную упругость, т. е. средам, относящимся к твердым деформируемым телам, а не к вязким жидкостям.  [c.4]


Основные соотношения и краевые условия. Рассмотрим еш,е одну линейную двумерную задачу классической теории упругости.  [c.57]

Особое внимание уделено получению основных уравнений, соотношений и вариационных формулировок задач статики и термоупругости многослойных оболочек с использованием варианта теории, учитывающего деформации поперечных сдвигов. В качестве кинематических гипотез выступают предположения о несжимаемости стеики оболочки в поперечном направлении и линейном распределении по толщине многослойного пакета касательных перемещений. Распределения касательных поперечных напряжений выбираются в наиболее простом виде независимо от кинематических гипотез. Приведение трехмерной задачи теории упругости к двумерной осуществляется с использованием смешанной вариационной формулировки. Все преобразования выполнены с учетом переменности метрики по толщине оболочки. Показана идентичность полученных уравнений равновесия с интегральными уравнениями трехмерной теории упругости.  [c.66]

Основная концепция теории упругости — постоянное соотношение между напряжением и деформацией — свойство, которое не является исключительной особенностью только упругих тел. Как было показано, при определенных условиях возможно применение по отношению к конечным результатам циклической нагрузки линейной зависимости между напряжением и деформацией грунтов. Последнее позволяет использовать закономерности теории упругости применительно к грунтам, которые рассматриваются при этом не как упругие, а как линейно деформируемые тела.  [c.99]

Основным физическим законом математической теории упругости является обобщенный закон Гука, выражающий наличие линейных соотношений между величинами, определяющими напряженное состояние (нормальные и касательные напряжения) в упругом теле, и величинами, характеризующими его деформацию (относительные удлинения и сдвиги). Это свойство идеально-упругого (гукова) тела соблюдается для большого числа материалов при достаточно малых деформациях.  [c.212]

Большое значение при использовании рассмотренного выше метода определения критических размеров трещин в деталях имеет обоснование характеристик вязкости разрушения /Сс и Ос, полученных на лабораторных образцах. Основная сложность, возникающая при этом, связана с наличием в вершине трещины зоны пластической деформации, что при ее достаточно больших размерах приводит к несоответствию действительной картины напряженно-деформированного состояния и вида разрушения тому, что предполагается соотношениями, полученными на основе теории упругости (линейной механики разрушения). Для расчетов могут быть использованы только те значения коэффициентов интенсивности напряжений, которые получены в условиях плоского деформированного состояния. Иногда это достигается выбором образцов таких размеров, в которых для исследуемого материала реализуется указанное условие.  [c.304]

Если напряжения лежат в пределах пропорциональности для материала О., то для расчёта О. пользуются зависимостями упругости теории. В статич. расчёте О. на прочность и жёсткость определяют напряжения, деформации и перемещения разл. точек О. в зависимости от заданной нагрузки. Как правило, в расчётах на прочность прогибы О. (перемещения вдоль нормали к срединной поверхности) могут считаться малыми по сравнению с толщиной О. тогда соотношения между перемещениями и деформациями линейны соответственно линейными (для упругой задачи) будут основные дифф. ур-ния.  [c.476]

В книге изложены основные соотношения линейной теории упругости, плоскап задача, приведены примеры решения некоторых пространственных задач, задачи изгиба тонких упругих оболочек. Изложены вопросы расчета нелинейно-упругих, упру-гопластимеских тел, а также вязкоупругих тел.  [c.2]


Основные соотношения классической теории упругости Линейиая классическая теория базируется на ряде гипотез, основными из которых являются предположения о сведении системы сил, действующих на элементарную площадку, только к рав недействующей (отсутствие моментов), о малости градиентов перемещений (линей пая связь между деформациями и перемещениями), об идеальной упругости материала (линейная связь между напряжениями и деформациями)  [c.137]

Теперь возцикает вопрос, какие упругие постоянные следует использовать для определения матрицы [Хо], Если поведение материала в основном описывается соотношениями линейной теории упругости и отклонения от линейно-упругого поведения локализованы, то естественно использовать начальные значения упругих постоянных. Однако если нелинейность проявляется для всех напряжений, то для ускорения сходимости можно рекомендовать скорректировать упругие постоянные после первой итерации.  [c.397]

Связанная система уравнений (50) и (51) по своей структуре аналогична системе, описывающей большие прогибы однородных пластин (см. работу Тимошенко и Войновского-Кригера [163] с. 418), включающей в отличие от системы (50), (51) нелинейные операторы, а также основным уравнениям линейной теории пологих оболочек ([163 ], с. 559). В нелинейной теории пластин й в теории пологих оболочек связь между уравнениями осуществляется через коэффициенты, зависящие от кривизны, а в рассматриваемом здесь случае слоистых анизотропных пластин эта связь вызвана неоднородностью материала (она осуществляется с помощью оператора включающего элементы матрицы 5 /, которые зависят, в свою очередь, от элементов матрицы Ац и матрицы Вц, входящих в исходные соотношения упругости). Это означает, что при постановке граничных условий на краях слоистой анизотропной пластины необходимо одновременно рассматривать силовые факторы и перемещения, соответствующие как плоскому, так и изгибному состояниям. При этом на каждом краю следует сформулировать по четыре граничных условия.  [c.178]

Это основные соотношения для относительных удлинений и сдвигов линейной теории упругости. В дальнейшем во всех случаях, когда Нет специальных оговорок, будем рассматривать линейные геометрические соотношения такого типа. На рис. 1.6 представлены две составляющие полного угла сдвига Уху плоскости г = onst. Каждая из них, как и величины е -, гу г yyj2 = y yl2 yzJ 2 = yxJ% является компонентом тензора деформации.  [c.11]

Построению общей нелинейной теории упругих оболочек сопутствует ряд трудностей, не возникающих при создании линейной теории оболочек. Связано это, прежде всего, с произвольностью (немалостью) углов поворота и деформащ1и. Необходим определенный объем знаний по нелинейной, (геометрически и физически) теории упругости. Отсутствие канонической формы соотношений нелинейной теории упругости поставило авторов перед необходимостью ввести в книгу эту главу. В ней в краткой форме, но систематически приведены основные зависимости нелинейной теории упругости, необходимые для построения общей нелинейной теории упругих оболочек. В некоторых случаях даны ссьшки на монографию [80], в которой содержится развернутое изложение актуальных разделов нелинейной теории упругости. Обстоятельному знакомству с нелинейной теорией упрзтости могут способствовать также работы [31, 47, 60, 62, 83].  [c.40]

Однако из числа экспериментальных результатов такого типа и, в частности, огромного количества статей, посвяш,енных краевым задачам линейной теории упругости, лишь немногие представляют глубокий научный интерес. В этой книге я не ставил перед собой непосильной задачи проследить во всех подробностях развитие и современное состояние исследования краевых задач со всеми его успехами и неудачами, не говоря уже об оценке их значения для развития техники. Кроме того, в самом начале работы я решил исключить из рассмотрения большую часть обширной литературы по разрушению, прежде всего потому, что трехсотлетний опыт разрушения образцов из материалов всех видов, начиная от костей кита и кончая сталью, при почти всех возможных комбинациях условий проведения испытаний, не вскрыл пока каких-либо общих черт поведения твердых тел. Главная часть этой книги связана, таким образом, с основной проблемой экспериментальной механики твердого тела установлением определяющих соотношений.  [c.27]

Попытки распространить гюлучеиные в теории упругости решения краевых вадач для тел е траншами на случай образования paBjaHiejibHO небольших 80И пластичности, размеры которых меньше размеров трещин, в первую очередь связаны с предложеайсы Д. Ирвина определять фиктивную длину трещины как сумму фактической длины трещины и радиуса пластической зоны. При этом радиус для пластической зоны получают из упругого решения, приравнивая напряжения (в уравнении для описания распределения напряжении у вершины трещины) к пределу текучести для идеально упругопластического материала или материала со степенным упрочнением. Эти подходы к оценке роли местных пластических деформаций в зонах трещин позволили использовать основные соотношения линейной механики разрушения при номинальных напряжениях по неослабленному сечению до 0,7 от предела текучести и о ослабленному — до 0,8—0,9 от предела текучести.  [c.35]

Основное состояние, описываемое зависимостями линейной теории упругости, представлено в ней через тензор Грина, и задача сведена к исследованию систем линейных интегральных уравненйй (последние нри соответствующих предположениях переходят в уравнения устойчивости тонкостенных элементов конструкций). Изучено влияние на устойчивость-изменения поверхностных и массовых сил, а также деформаций, предшествующих потере устойчивости. Общие уравнения нелинейной упругости используются В. В. Болотиным (1958) при обсуждении проблемы устойчивости как в малом , так и в большом . При этом принимается предположение о малости удлинений и сдвигов, анализируются собственные значения общей краевой задачи устойчивости в малом , формулируются соотношения устойчивости в большом .  [c.78]


Механическую систему называют нелинейной, если нелинейны соотношения, описывающие процессы ее движения или статического деформирования, в частности, если хотя бы одна из обобщенных сил нелинейно связана с обобщенными координатами и (или) обобщенными скоростями. Хотя всякая реальная механическая система в той или иной степени нелинейна, в ряде случаев влияние нелинейности пренебрежимо мало тогда для описания таких систем можно пользоваться упрощенными линейными моделями и соответствующими им линейными теориями. Таковы, например, основные статические и динамические модели, используемые в сопротивлении материалов, строительной механике и теории упругости, а также некоторые простейшие модели теорий вязкоупругости, аэроупругости, гидроупругости, магни-тоупругости. О линейных динамических задачах см. в т. 1.  [c.11]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

В главе 4 представлен подробный обзор исследований, посвященных статике, устойчивости и динамике пластин из композиционных материалов. Рассмотрены феноменологические соотношения упругости для пластин из однонаправленных композиционных материалов, находящихся в условиях плоского напряженного состояния, матрицы жесткости для тонких слоистых пластин, теории малых и больших прогибов тонких пластин, толстые слоистые и трехслойные плиты. Для всех типов пласТин приведены основные гипотезы, теоретические соотношения, подробно рассмотрены различные частные случаи. Анализ дан в предположении, что материал линейно упругий и установлены случаи, для которых это предположение нарушается.  [c.10]

Некоторые приложения теории вязкоупругости. Многочисленные приложения теории вязкоупругости относятся к стержням, пластинам и оболочкам, при этом, кроме общих соотношений вязкоупругости, исследовались и существенно более простые модели типа модели Фойхта или Максвелла. Так, в задачах устойчивости при ползучести основной качественный эффект связан с геометрической нелинейностью, вследствие которой возникает возможность упругого хлопка при рассмотрении отдельных примеров применение линейных соотношений вязкоупругости вместо нелинейного закона ползучести существенно упрощает технику, не меняя.  [c.153]


Смотреть страницы где упоминается термин Основные соотношения линейной теории упругости : [c.24]   
Смотреть главы в:

Теория упругости  -> Основные соотношения линейной теории упругости



ПОИСК



Линейная теория

Основные соотношения

Основные соотношения линейной теории упругости для однородной изотропной среды

Основные соотношения линейной теории упругости и вязкоупругости для сжимаемых и несжимаемых материалов в конечно-элементной формулировке

Основные соотношения теории

Основные соотношения теории упругости

Соотношение линейное

Соотношения теории упругости

ТЕОРИЯ УПРУГОСТИ Линейная теория упругости

Теория упругости

Теория упругости линейная

Упругости линейная

Упругость Теория — см Теория упругости

Упругость соотношения



© 2025 Mash-xxl.info Реклама на сайте