Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модель нелинейная вязкоупругая

Рассмотрим модель нелинейной вязкоупругой среды, физические уравнения состояния которой записываются в виде  [c.58]

Москвитин В.В. Об одной модели нелинейной вязкоупругой среды, учитывающей влияние накопленных повреждений // Механика полимеров.  [c.268]

В. В. Москвитиным предложена модель нелинейной вязкоупругой среды наследственного типа, учитывающая влияние вида напряженного состояния [ПО] (см. п. 1.4). В этой модели связь между девиаторными величинами содержит наряду со вторыми инвариантами также и первые инварианты тензоров напряжений и деформаций, В свою очередь, соотношение между первыми инвариантами содержит и вторые инварианты девиаторов. Интегральные соотношения теории уравнения (1.40) и (1.41)] записываются следующим образом  [c.193]


Нелинейная вязкоупругая модель. В основу нелинейной упругой зависимости обычно принимают формулу Герца  [c.169]

Как следует из упражнения 6.5, если на кривой ползучести (рис. 2) оказывается участок неустановившейся ползучести, то при /> 2 уже нельзя пользоваться моделью линейного вязкоупругого тела и нужно пользоваться нелинейной моделью.  [c.42]

Подробнее с линейной и нелинейной теорией вязкоупругости можно ознакомиться, например, по книгам [38, 66, 92]. Методы решения нелинейной вязкоупругости изложены в работе [78]. Вопросы определения комплексных вязкоупругих характеристик достаточно полно изложены в книге [112]. Доказательство исключительности модели Максвелла дано в [114].  [c.46]

Проанализируем возможность применения указанной модели к описанию нелинейных вязкоупругих свойств политетрафторэтилена при сдвиге и растяжении с наложением гидростатического давления [621. Основная часть программы экспериментов и методики исследования приведена в п. 5.1 и 5.3.  [c.194]

Многие материалы, особенно при высоких температурах, характеризуются нелинейной связью напряжений, деформаций и скоростей деформаций. Приложения строгих теорий нелинейной вязкоупругости к исследованию сложного напряженного состояния при контакте тел несогласованной формы разработаны недостаточно, однако установлена пригодность некоторых упрощенных аналитических моделей. Заслуживают, внимания две  [c.225]

Книга является введением в современную механику сплошных сред. В ней изложена общая теория определяющих уравнений и термодинамики сплошных сред. Рассмотрена общая теория деформаций (нелинейный случай), построены модели гиперупругой среды и рассмотрены частные случаи модели пластической среды, вязкоупругость и теория течения вязких жидкостей. В приложениях приведен весь необходимый математический и термодинамический аппарат.  [c.351]

Линейная теория вязкоупругости и термовязкоупругости как одна из моделей механики сплошной среды возникла давно, однако большое значение она приобрела в последнее время, главным образом в связи с созданием разнообразных полимерных материалов и пластмасс и их применением в различных областях народного хозяйства. Широкое развитие получили различные теоретические и экспериментальные исследования в области вязкоупругости, в том числе линейная и нелинейная теории деформирования вязкоупругих материалов.  [c.3]


Можно представить себе модель вязкоупругого материала, в которой вместо линейно вязкого элемента по (22.2) установлен нелинейно вязкий элемент по (22.5) или (22.6). В этом случае уравнение механических состояний принимает вид  [c.400]

Для уравнений плоского двумерного нестационарного движения вязкой среды построен скалярный потенциал - аналог линии частицы жидкости - являющийся переменной лагранжева типа. Дано применение уравнений гидродинамики, записанных в этих переменных, к различным классам конвективных динамических и тепловых процессов. Рассматривались реологические модели жидкостей ньютоновская несжимаемая и сжимаемая, нелинейно-вязкая, вязкоупругая, а также турбулентный поток. Для изотермического процесса удалось построить простое преобразование уравнений А.С. Предводителева (жидкость дискретной структуры) к классическим уравнениям Стокса.  [c.128]

Внутреннее трение связано с диссипативными процессами, происходящими во время колебаний в материале системы. Разнообразие свойств конструкционных материалов, в частности их диссипативных свойств, обусловило многообразие моделей учета диссипации энергии при динамических процессах. Условно эти модели можно разделить на два класса к первому относят нелинейные модели, описывающие гистерезисные явления при циклическом деформировании (использование этих моделей приводит к нелинейным уравнениям движения, поэтому эти модели в данной книге не рассматривают [82, 84]) ко второму — модели, связанные с вязкоупругим поведением материалов при деформировании.  [c.140]

Тепловой режим конструкций энергетических устройств из композитных материалов (КМ) в ряде случаев характеризуется интенсивным теплообменом на поверхности, высокими скоростями изменения температуры во времени и большими градиентами температур внутри этих конструкций. При этом в материале возникают нелинейные физико-химические явления, которые часто ведут к снижению несущей способности конструкций. К ним относятся структурные фазовые превращения, взаимодействие компонентов, расслоение, температурные и структурные напряжения, изменение теплофизических, упругих, прочностных и других характеристик, реологические эффекты. Расчет предельного состояния конструкции, находящейся в таких условиях, должен включать описание процессов теплопроводности, термо- и вязкоупругости, кинетики химических реакций, аэродинамики фильтрующих газов, диффузии, а также требует из-за анизотропии свойств определения большого количества теплофизических и механических характеристик материалов. Точный расчет с учетом изменения характеристик от температуры весьма сложен, так как связан с решением нелинейных интегродифференциальных уравнений с переменными коэффициентами. На достоверность его результатов большое влияние оказывает трудность представления и выбора достаточно полно отражающей действительность модели процесса, связанного с необратимыми явлениями.  [c.7]

Одной из таких моделей может быть следуюш,ая пусть тело из однородного изотропного нелинейно-упругого (или вязкоупругого) материала под воздействием внешних усилий приобрело начальные немалые неоднородные деформации. Вначале будем считать, что материал тела нелинейно-упругий.  [c.325]

Для решения зтих задач в механике разрушения строятся модели разрушения, разрабатываются аналитические и численные методы решения задач для тел со стационарными и распространяющимися дефектами в рамках теорий упругости, пластичности, вязкоупругости, а также теорий, описывающих поведение нелинейных сред.  [c.3]

Многие полимерные материалы при повышенных напряжениях не следуют линейной модели вязкоупругой среды (1.42), (1.43) и проявляют физически нелинейные свойства. Применяемые для их описания различные аналитические модели подробно рассмотрены Москвитиным [188]. Здесь остановимся на некоторых из них.  [c.58]


Так, в [28] исследуется динамическое поведение механической системы с двумя степенями свободы на основе модели (6) при а. = 0,631 и /9 = 0,641, а также при а — Р — Проанализировано поведение корней характеристических уравнений, и определены перемещения рассматриваемой системы. Модель (6) была использована в [29] для описания нестационарных колебаний вязкоупругой балки, лежащей на вязкоупругом основании, при этом параметры дробности для балки и основания выбирались различными. Модель, аналогичная модели (8), была использована в [30] при изучении нелинейных затухающих колебаний двухмассовой механической системы. Подробный пример использования модели (7) в численных исследованиях динамического поведения вязкоупругих стержней можно найти в [31].  [c.697]

Поведение вязкоупругих материалов несколько иное. В предыдущем параграфе было показано, как можно проанализировать сопротивление качению простого линейного вязкоупругого материала. К сожалению, большинство вязкоупругих материалов нелинейно и, кроме того, их релаксация обычно не может быть описана в терминах одного времени релаксации, как в моделях, показанных на рис. 6.20. Однако возможен обычный эмпирический подход с использованием выражений (9.2) и (9.3) для сопротивления качению и привлечением коэффициента гистерезисных потерь ос. Наиболее общий метод измерения гистерезисных свойств вязкоупругих материалов состоит в измерении диссипации за цикл деформаций как функции частоты. Результаты этих измерений обычно выражаются через тангенс угла потерь 6, где 6 — фазовый угол между напряжениями и деформациями. Сопоставляя значения tg6 с сопротивлением качению, можно сравнить гистерезисную теорию с полным анализом ( 9.4) для простого материала с функцией релаксации (9.25). Для такого материала тангенс угла потерь равен  [c.353]

Теоретическое описаиие результатов экспериментов на примере ПТФЭ проводили с помощью модели нелинейной вязкоупругой среды наследственного типа, учитывающей влияние на механические свойства гидростатического давления [ПО, П21.  [c.176]

Третьей характерной кривой является график зависимости между напряжением и деформацией для определенного момента времени. Ясно, что для любого момента времени этот график будет представлять собой прямую линию с постоянным углом наклона. Линейная зависимость напряжений от деформаций (В каждый момент времени есть следствие неявного предположения о линейности моделей, состоящих из пружин и цилиндров с поршнями. Эта линейная зависимость в общем случае очень важна при исследовании напряжений и деформаций поляризационно-оптическим методом, так как она позволяет распростра- нить результаты, полученные на моделях из вязкоупругого материала, на натуру из упругого материала. Большая часть вязкоупругих материалов обладает линейной зависимостью между напряжениями и деформациями в определенных пределах изменения напряжений и деформаций (или даже времени). Существуют и нелинейные вязкоупругие материалы, полезные в некоторых специальных задачах. Однако в большинстве случаев приходится выбирать материал с линейной зависимостью между напряжениями и деформациями и следить за тем, чтобы модель из оптически чувствительного материала не выходила в ходе испытания за пределы области линейности свойств материала. При фотографировании картины полос момент времени для всех исследуемых точек оказывается одним и тем же. Если используются дополнительные тарировочные образцы, то измерения на них необходимо проводить через тот же самый интервал времени после приложения нагрузки, что и при исследовании модели. Читатель, желающий подробнее ознакомиться с использованием расчетных моделей для анализа свойств вязкоупругих материалов, может обратиться к другим публикациям по данному вопросу, в частности к книге Алфрея [1] ).  [c.122]

Механическую систему называют нелинейной, если нелинейны соотношения, описывающие процессы ее движения или статического деформирования, в частности, если хотя бы одна из обобщенных сил нелинейно связана с обобщенными координатами и (или) обобщенными скоростями. Хотя всякая реальная механическая система в той или иной степени нелинейна, в ряде случаев влияние нелинейности пренебрежимо мало тогда для описания таких систем можно пользоваться упрощенными линейными моделями и соответствующими им линейными теориями. Таковы, например, основные статические и динамические модели, используемые в сопротивлении материалов, строительной механике и теории упругости, а также некоторые простейшие модели теорий вязкоупругости, аэроупругости, гидроупругости, магни-тоупругости. О линейных динамических задачах см. в т. 1.  [c.11]

Нелинейно-упругая и нелинейно-вязкоупругая модели. Линейно-уп-ругая кольцевая модель правильно предсказывает ряд основных особенностей намотки композитов, в частности, существенную нелинейность зависимости давления ка оправку от числа витков. Однако эта модель не учитывает нелинейность диаграммы поперечного сжатия Ог — е,. Экспериментально неоднократно подтверждался эффект нелинейности зависимостн  [c.462]

Локощенко А. М. Описание поведения полиэтилена и анализ плоской задачи с помощью нелинейной вязкоупругой модели, учитывающей влияние среднего напряжения. — В кн. Научные труды МГУ. Изд-во МГУ, 1975, № 37, с. 67—74.  [c.312]

Первый основной закон термодинамики не накладывает каких-либо ограничений на определяюш,ие уравнения. Это же относится и к третьему закону. Второй основной закон термодинамики исключает процессы с отрицательным притоком энтропии. Это условие сужает класс допустимых уравнений состояния, однако не до желаемой степени. Более обещаюш,им здесь является принцип Онзагера [22], поскольку он относится к необратимым процессам и доставляет определенную информацию о направлении таких процессов, более точную, нежели второй основной закон. В самом деле, как было показано Био [1], принципа Онзагера достаточно для исследования некоторых проблем линейной вязкоупругости и установления так называемой вязкоупругой аналогии. К сожалению, однако, применение принципа Онзагера ограничивается только линейными задачами и поэтому не может дать результатов в более интересных случаях нелинейных моделей сплошных сред (неньютоновы жидкости, нелинейные вязкоупругие тела, вязкопластичные и пластичные тела и др.).  [c.9]


Недостаток знаний о характере разрушения в концевой зоне трещины может компенсироваться разумным моделированием структуры края трещины. Из рис. 39.1 видно, что нелинейно деформированный, частично разрушенный материал сосредоточен в узкой области перед вершиной трещины. Это позволяет при моделировании края трещины заменить концевую область разрезом на продолжении трещины, находящимся под действием равномерно распределенных самоуравновешенных напряжений (см. рис. 4.1), т. е. использовать уже изложенную в 7 б -модель. Напомним, что в б -модели напряжения а в концевой области считаются постоянными и равными либо сопротивлению отрыва, либо пределу текучести материала. Однако это предположение будучи справедливым для упругих и упругопластических материалов, не выполняется для ряда вязкоупругих материалов из-за реономности их свойств. Например, при разрушении полимеров, таких как полиметилметакрилат (ПММА), напряжения в концевой области существенно меняются с ростом трещины, однако размер концевой зоны меняется при этом незначительно (а в довольно широком диапазоне скоростей роста трещины практически постоянен). Более того, как следует из экспериментов, и форма концевой области для трещины, растущей в ПММА, не зависит от длины трещины, т. е. имеет место автомодельность.  [c.313]

Глава посвящена влиянию вязкоупругости на термомехаиическое поведение и срок службы композитов с полимерной матрицей. В первую очередь коротко рассмотрено линейное вязкоупругое поведение полимерных смол при температурах выше и ниже температуры стеклования. Далее показан простой способ учета этого поведения при оценке эффективных термомеханических свойств композитов и анализе остаточных напряжений, являющихся следствием термической и химической усадки компонент этих материалов в процессе переработки. Затем изложен анализ колебаний и распространения волн в диапазоне упругих свойств композитов. Особое внимание при этом уделено использованию алгоритма быстрого преобразования Фурье ), Разделы, посвященные линейной вязкоупругости, завершаются описанием процессов трещинообразования на микро- и макроуровне при помощи аналитических методов и алгоритма FFT, В главу также включено обсуждение предварительных вариантов моделей, позволяющих учесть влияние статистической природы дефектов на нелинейное механическое поведение композитов и характер их разрушения под действием переменных во времени нагрузок.  [c.180]

Подведем итог. Исследование гидродинамической системы с двумя сильными разрывами показало, что вырожденный случай прилипания ( = 0) жидкости на внутренних стенках j-области не содержит интересных качественных явлений. Это означает, что проскальзывание жидкости на разрыве физически содержательно са.мо по себе, вне связи с конкретными реологическими свойствами. Для разных реологических моделей жидкости (ньютоновская, нелинейно-вязкая, вязкоупругая) эффект скольжения проявляет себя многофакторным образом. Представленные здесь примеры демонстрируют эволюционные свойства течений с турбулентной вязкостью на фоне эффекта скольжения. В формировании структуры потока ифают принципиальну ю роль два обстоятельства эффект скольжения жидкости вдоль линии сильного разрыва и характер распределения (монотонный либо немонотонный) полных гидродинамических напоров в направлении основного течения.  [c.100]

Для вязкоупругого тела, не обладающего мгновенной упругой реакцией (модель типа фохтовской), имеет место очевидный парадокс согласно критерию Гриффитса трещины в таком теле не распространяются, а по критерию Ирвина рост возможен, но он будет идти без потребления энергии ( ). Появление этого парадокса связано, конечно же, с наличием чразвычайпо сильной идеализации полным пренебрежением размерами и структурой области высокой концентрации напряжений (области, в которой протекают нелинейные диссипативные процессы и процессы разрушения). Ситуацию можно спасти, сделав, например, предположение о том, что поверхностная энергия J является универсальной функцией скорости трещины и. Вид функции (v) получают либо из эксперимента, либо из рассмотрения моделей с зоной ослабленных связей.  [c.156]

К тому времени были выяснены основные качественные закономерности, отличающие ползучесть металлов при высоких температурах. К ним относится существенная нелинейность зависимости между напряжением и деформацией, которая привела к тому, что линейные вязко-упругие модели применительно к металлам не получили распространения. (Если пользоваться степенной аппроксимацией Бэйли, то коэффициент п изменяется в пределах от 3 до 20.) Поэтому теория ползучести металлов при высоких температурах и теория вязкоупругости практически развивались независимо, причем последняя поначалу имела по преимуществу теоретическое значение.  [c.272]

Некоторые приложения теории вязкоупругости. Многочисленные приложения теории вязкоупругости относятся к стержням, пластинам и оболочкам, при этом, кроме общих соотношений вязкоупругости, исследовались и существенно более простые модели типа модели Фойхта или Максвелла. Так, в задачах устойчивости при ползучести основной качественный эффект связан с геометрической нелинейностью, вследствие которой возникает возможность упругого хлопка при рассмотрении отдельных примеров применение линейных соотношений вязкоупругости вместо нелинейного закона ползучести существенно упрощает технику, не меняя.  [c.153]

Таким образом, температура оказывает существенное влияние на функции и параметры, характеризующие вязкоупругие свойства среды С целью частичного преодоления этих трудностей введено понятие термореологически простых тел, для которых, как указывалось в п. 1.2, влияние температуры учитывается введением модифицированного времени. Приведем уравнения термовязкоупругости, соответствующие нелинейной модели  [c.39]

Механика разрушения представляет собой довольно сложную, сильно математизированную науку, оперирующую с моделями линей-но И нелинейно-упругого, упругопластического, вязкоупругого тел, с моделями, одновременно использующими понятия и методы механики, физики и химии, с моделями сплошных и дискретных сред, сред с иерархией структур различного масштабного уровня она изучает процессы как в статике, так и в динамике. Вместе х тем некоторые достаточно существенные ее положения и результаты можно рассмотреть, не выходя за рамки стандартных понятий и методов курса сопротивления материалов.  [c.15]

В том случае, когда легкое моделируется идеально упругим пузырем с функцией растяжимости, зависящей только от объема легких = / (V) (материал стенки нелинейно- или линейно-упругий), величина= / (У)- При этом соотношение (3.2) представляет собой конечное соотношение между альвеолярным давлением, внешней силой и объемом легких. Если материал стенки легкого более сложный по своим физическим свойствам, например моделируется вязкоупругим телом Фойхта или Максвелла, то функция растяжимости будет содержать параметры, определяемые релаксационными уравнениями типа (1.6). Пример такой модели содержится в [9]. Однако, как указывалось выше, из [9] следует, что модели легких в виде упругого пузыря даже с усложненными механическими свойствами их оболочек не описывают некоторые опытные данные для форсированных маневров.  [c.37]


Смотреть страницы где упоминается термин Модель нелинейная вязкоупругая : [c.502]    [c.352]    [c.405]    [c.307]    [c.10]    [c.354]    [c.43]    [c.7]    [c.154]    [c.7]    [c.312]   
Вибрации в технике Справочник Том 4 (1981) -- [ c.169 , c.170 ]



ПОИСК



Вязкоупругость

Вязкоупругость нелинейная

Модель вязкоупругая

Модель нелинейная

Модель нелинейно-вязкоупругая — Напряжения 462—466 — Результаты по намотке с постоянным натяжением

Применение различных нелинейных моделей вязкоупругости для описания опытов на ползучесть при плоском напряженном состоянии



© 2025 Mash-xxl.info Реклама на сайте