Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинематика в пространстве

КИНЕМАТИКА В ПРОСТРАНСТВЕ — ВРЕМЕНИ 395  [c.395]

Кинематика в пространстве — времени. 4-импульс. а) Скорость точки. Рассмотрим движущуюся точку (не обязательно частицу). Уравнения ее мировой линии можно написать в виде  [c.395]

Визуальная модель геометрического образа изделия (ГОИ)—это графический образ пространственной структуры изделия на экране дисплея. Изобразительные и графические характеристики подобной модели намного превышают возможности ручного графического изображения за счет введения в пространство модели фактора времени. По своим динамическим возможностям машинная визуализация ГОИ максимально приближается к натурной модели. Конструктор на самом раннем этапе разработки формы получает возможность увидеть структуру будущего изделия в полном соответствии с кинематикой и динамикой всех входящих в нее элементов. Увязку кинематически связанных звеньев конструкции можно осуществлять на движущейся модели-изображении в любом масштабе времени. При разработке изделий сложной объемно-пространственной структуры для уточнения кинематических взаимосвязей компонентов приходилось осуществлять построение экспериментальных натурных моделей. В процессе испытаний на таких моделях уточнялся и окончательно отрабатывался мысленный образ конструкции (рис. 1.1.2,а). Преимущества визуальной модели перед статическими графическими моделями выступают особо ярко в сложных элементах конструкций, каковыми являются средства механизации летательных аппаратов.  [c.17]


Кинематикой называется раздел механики, в котором изучается движение материальных тел в пространстве с геометрической точки зрения, вне связи с силами, определяющими это движение.  [c.153]

Классическая механика исходит из предположения, что свойства пространства и времени не зависят от того, какие материальные объекты участвуют в движении и каким образом они движутся, В связи с этим возникает возможность предварительно выделить и изучить некоторые общие свойства движений. При таком изучении рассматриваются лишь общие геометрические характеристики движения, которые в равной мере относятся к движению любых объектов — молекулы или Солнца, изображения на экране телевизора или тени самолета на Земле. Если бы предметом нашего исследования были лишь свойства пространства, то мы не вышли бы за пределы геометрии. С другой стороны, если бы мы интересовались лишь течением времени, то возникающие при этом простые задачи относились бы к иной науке, которую можно было бы назвать хронометрией . Согласно данному выше определению механики, нас интересуют изменения положения некоторых объектов в пространстве и времени. До тех пор, пока мы не рассматриваем инерционных свойств движущихся объектов, нас интересует по существу лишь объединение геометрии и хронометрии. Такое объединение геометрии и хронометрии называется кинематикой. Кинематика не является собственно частью механики (поскольку при ее построении никоим образом не учитываются инерционные свойства материи) и могла бы излагаться в курсах геометрии. Однако по традиции в обычные курсы геометрии кинематика не включается, и необходимые сведения из кинематики приводятся в курсах механики. Связано это главным образом с тем, что хронометрия сравнительно бедна идеями и фактами, и поэтому, если отвлечься от потребностей механики, добавление хронометрии к обычным геометрическим построениям мало интересно с математической точки зрения.  [c.10]

Инерциальные системы отсчета. В первой главе было пояснено, каким образом в классической кинематике вводятся системы отсчета. В кинематике в силу предположения об однородности и изотропности пространства и однородности времени все системы отсчета равноправны. Среди всех вводимых так систем отсчета можно  [c.42]

Основные понятия. Кинематика есть раздел механики, посвященный изучению движения тел с геометрической точки зрения, без учета причин, вызывающих изменение этого движения, т. е. сил. От геометрии кинематика- отличается, по существу, тем, что при рассмотрении перемещений тел (или соответствующих геометрических образов) в пространстве принимается во внимание еще и время перемещения. Поэтому кинематику иногда называют геометрией четырех измерений , понимая под четвертым измерением время. Такое представление оказалось плодотворным в теории относительности, где при изучении движения учитывается взаимосвязь пространства и времени друг с другом и с движущейся материей (мир по терминологии Г. Минковского рассматривается как пространственно-временное многообразие четырех измерений, а событие — как точка этого многообразия).  [c.46]


Кинематика изучает изменения, происходящие с течением времени в положении тел в пространстве. Она позволяет разобраться в многообразии видов механического движения и установить пространственные и временные меры движения. Но кинематика не дает возможности предсказать, как будет двигаться тело под действием приложенных к нему сил, или определить, какие силы должны быть приложены к данному телу, чтобы оно совершало заданное движение.  [c.14]

Огромно научное значение кинематики. В мире нет ничего кроме движущейся материн, и движущаяся материя не может двигаться иначе, как в пространстве и во времени.  [c.15]

В кинематике точки рассматриваются характеристики движения точки, такие, как скорость, ускорение, и методы их определения при различных способах задания движения. Важным в кинематике точки является понятие траектории. Траекторией точки называется геометрическое место ее последовательных положений в пространстве с течением времени относительно рассматриваемой системы отсчета.  [c.98]

Прежде чем рассматривать конкретные вопросы кинематики, целесообразно остановиться на содержании и смысле общих основных понятий, с которыми мы будем встречаться в дальнейшем. К ним принадлежат, прежде всего, понятия о пространстве, о времени, а также о движении материи в пространстве и времени.  [c.65]

Основной задачей кинематики является изучение законов движения материальных точек и их систем ). Если можно определить положение точки в пространстве в произвольный момент времени,— ее закон движения известен. В этой главе идет речь о законе движения одной материальной точки.  [c.70]

Наряду с понятием силы, совершенно достаточным для отдела статики, и классическими представлениями о пространстве и времени, в кинематике, в динамике возникает дополнительная потребность количественного описания инерционных свойств материальных тел, характеризуемых понятиями массы и моментов инерции.  [c.10]

Как уже подчеркивалось во введении, в отличие от большинства традиционных курсов теоретической механики, в заключительной части настоящего отдела уделяется внимание основам кинематики сплошных деформируемых сред. В частности, излагается расширение основной теоремы кинематики абсолютно твердого тела об общем случае перемещения и движения тела в пространстве на случай деформируемой среды и проводится выяснение кинематического смысла компонент тензоров деформаций и скоростей деформаций.  [c.144]

Сила — величина векторная, поэтому графически изображается вектором. Длина вектора в определенном масштабе выражает модуль (численное значение) силы, а прямая, на которой расположен вектор, и его направление указывают линию действия и направление силы. Положение векторов сил в пространстве будем определять с помощью прямоугольной декартовой системы координат, связанной с Землей. Более подробно о системах координат (системах отсчета) будет сказано в последующих разделах курса — кинематике и динамике.  [c.24]

Основная область эффективного применения ARM — исследование и анализ объектов, процессов, кинематики и динамики систем, поведение которых в пространстве и времени описано дифференциальными уравнениями, а точное аналитическое их решение громоздко или вообще не осуществимо. Решение линейных и нелинейных дифференциальных уравнений по своей важности оставляет далеко позади все другие возможности использования АВМ в курсе ТММ. Даже такие задачи, как извлечение корней многочленов при решении системы алгебраических уравнений, решаются проще, если их свести к эквивалентным дифференциальным уравнениям. К задачам, эффективно решаемым на АВМ, относятся, как правило, механизмы с упругими (гибкими) связями, пневматические, гидравлические и электрические механизмы.  [c.8]

Как видно из схемы, механизм манипулятора образован из пространственной незамкнутой кинематической цепи. Звенья этой цепи по аналогии с рукой человека имеют названия О — корпус, 1 — плечо, 2 — предплечье, 3 — кисть или захват, —палец. Звено 4 при рассмотрении структуры, кинематики и динамики манипулятора объединяется со звеном 3. Поэтому считаем, что кинематическая цепь манипулятора, показанного на рис. 146, состоит из стойки (корпуса) и трех подвижных звеньев. Кинематическая пара 1—2 выполняется как вращательная, а пары 1—О и 2—3 — как сферические трехподвижные, причем они часто заменяются кинематическими соединениями, составленными из вращательных пар, оси которых пересекаются (см. табл. 2). Следовательно, рассматриваемый манипулятор имеет семь степеней свободы, так как число степеней свободы незамкнутой кинематической цепи равно сумме подвижностей кинематических пар. Захват в этом манипуляторе может занять любое положение в пространстве в пределах, определяемых конструктивными размерами звеньев.  [c.262]


КИНЕМАТИКА И СТАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ НА плоскости И В ПРОСТРАНСТВЕ  [c.50]

Все предыдущее исследование применимо к любому случаю движения твердого тела, имеющего одну степень свободы и движущегося параллельно вертикальной плоскости, если на тело действует только сила тяжести, В самом деле, согласно общей теореме кинематики, обе предыдущих кривых можно рассматривать как центроиды (т. е. геометрические места мгновенных центров вращения в теле и в пространстве), которые катятся одна по другой (.Статика", 16, 59) при любом движении твердого тела.  [c.172]

При всяком непрерывном движении тела около точки О первый конус катится без скольжения по второму. Чтобы это показать, достаточно рассмотреть два сферические поверхности, описанные тем же радиусом около неподвижной точки О, из которых одна неизменно связана с телом и движется вместе с ним, а вторая остается неподвижной в пространстве. Точка пересечения оси 0J с этими поверхностями опишет две сферические кривые. Рассуждение,которое приводит к аналогичной теореме в кинематике на плоскости ( Статика", 16) может быть полностью воспроизведено и в данном случае. Оно показывает, что при непрерывном движении тела первая из этих кривых катится без скольжения по второй. При изучении некоторых важных вопросов встречается случай, когда оба конуса являют круглыми конусами вращения, а угловая скорость остается постоянной. Соответствующий тип движения называется прецессионным", так как астрономическое явление прецессии, или предварения равноденствий, является одним из главных его примеров.  [c.73]

Как при традиционных методах проектирования, так и при методах, основанных на применении вычислительной техники, приходится решать три основные задачи выбор кинематики, обеспечивающей нужные скорости вращения выходного вала выбор параметров деталей, обеспечивающих необходимую статическую и динамическую прочность и жесткость механизма размещение валов, зубчатых колес и вспомогательных механизмов в пространстве коробки.  [c.94]

При необходимости определения параметров движения точки F в пространстве xyz необходимо осуществить элементарное преобразование координат при помощи матрицы, обратной матрице (39). Выше приведены уравнения для определения проекций скорости, ускорения движения и положений точек, а также звеньев пространственного кривошипно-коромыслового механизма общего вида, однако по этим величинам могут быть определены другие параметры кинематики и геометрические места как в абсолютном, так и в относительном движениях (центроиды, центры кривизны кинематических кривых, величины радиусов кривизны и т. п.).  [c.211]

Режимы и производительность сварки. Положение швов в пространстве различается нижнее, вертикальное, горизонтальное и потолочное. Кинематика движения конца мундштука сварочной горелки показана на фиг. 234. Основное движение - продольное. Поперечные и круговые движения являются вспомога-  [c.407]

В кинематике сплошных сред, наряду с принятыми в кинематике дискретной системы точек понятиями перемещений, скоростей и ускорений, появляется характерное для сплошной среды представление о бесконечно малой деформации среды, определяемой тензором деформаций. Если рассматривается непрерывное движение текучей среды, то основное значение приобретает тензор скоростей деформаций, равный отношению тензора бесконечно малых деформаций к бесконечно малому промежутку времени, в течение которого деформация осуществилась. Как с динамической, так и с термодинамической стороны модель сплошной среды отличается от дискретной системы материальных точек тем, что вместо физических величин, сосредоточенных в отдельных ее точках, приходится иметь-дело с непрерывными распределениями этих величин в пространстве — скалярными, векторными и тензорными полями. Так, распределение массы в сплошной среде определяется заданием в каждой ее точке плотности среды, объемное силовое действие — плотностью распределения объемных сил, а действие поверхностных сил — напряжениями, определяемыми отношением главного вектора поверхностных сил, приложенных к ориентированной в пространстве бесконечно малой площадке, к величине этой площадки. Характеристикой внутреннего напряженного состояния среды в данной точке служит тензор напряжений, знание которого позволяет определять напряжения, приложенные к любой произвольно ориентированной площадке. Перенос тепла или вещества задается соответствующими им векторами потоков.  [c.9]

В этом случае схема превратится в пространственную, а следовательно, цилиндр для сохранения прежней кинематики поршня должен перемещаться в пространстве по эллипсу, представляющему собой след проекции точки  [c.167]

Подобно геометрии, которая, изучая пространственные свойства тел, оставляет в стороне все остальные их материальные признаки (вес, твердость и т. д.), кинематика, рассматривая движение тел как происходящий во времени процесс непрерывного изменения их положения в пространстве, также оставляет в стороне вопрос о связи этого движения с материальной структурой тел и силами, на них действующими. Движущееся тело, следовательно, рассматривается в кинематике лишь как некоторый геометрический образ.  [c.160]

Механические явления, происходящие в пространстве, по разному фиксируются в различных координатных системах. Наблюдатели, связанные е различными системами координат, будут воспринимать по разному одно и то же объективное механическое явление. Поэтому главным вопросом кинематики сложного или относительного движения является установление связи между кинематическими величинами, характеризующими одно и то же механическое явление в двух различных координатных системах, имеющих взаимное относительное движение. Кинематические характеристики взаимных движений этих координатных систем надо полагать известными. Одну из этих систем будем условно называть неподвижной системой. Вторую, соответственно этому, будем называть подвиокной. Условность этих терминов очевидна. Обе системы. твижутся в пространстве относительно иных координатных спаем.  [c.130]


В 37 уже было дано понятие о векторе-гда цднге скалярной функции. Для понимания основ кинематики сплошной среды, в частности для определения ускорения в переменных Эйлера, необходимо углубить представление о градиенте скалярной функции, связав его с понятием о производной в пространстве  [c.332]

В статике рассматривались механические силовые взаимодействия материальных тел в равновесных их состояниях. В кинематике были установлены методы изучения происходящих в пространстве и во времени механических движений материальных тел и их систем, но вне связи с механическими взаимодействиями, обусловливающими эти движения. Динамика ставит целью изучение движения материальных тел в связи с механическими взаимодействиями между ними. При этом динамика заимствует у статики законы сложения сил и ириведеиия сложных их совокупностей к простейшему виду и пользуется принятыми в кинематике приемами описания движений. Задачей динамики является установление законов связи действующих сил с кинематическими характеристиками движений и применение этих законов к изучению частных видов движений. Лучше всего это сформулировано самим Ньютоном (1642—1726), создателем классической системы механики. Динамика должна, говорит он, по явлениям движения распознать силы природы, а затем по этим силам изъяснить остальные явления ). Эта формулировка точно передает сущность динамики и будет подробно разъяснена в дальнейшем.  [c.9]

В кинематике изучается дзижение материальных тел в пространстве с геометрической точки зрения, без учета сил, определяющих это движение.  [c.89]

Всякое движение тел совершается в пространстве и во времени. Движение тел в пространстве рассматривается относительно произвольно выбранной системы координат, которая, в свою очередь, связана, с каким-либо телом, называемь1м телом отсчета. Тело отсчета и связанная с ним система координат называются системой отсчета. Пространство в механике рассматривается как трехмерное евклидово пространство. Все измерения в нем производятся на основании методов евклидовой геометрии. За единицу длины при измерении расстояний принимается одни метр. Время в механике считается универсальным, т. е. протекающим одинаково во всех системах отсчета. За единицу времени принимается одна секунда. Время является скалярной непрерывно меняющейся величиной. В задачах кинематики его принимают за независимое переменное. Все другие величины (расстояния, скорости и т. д.) рассматриваются как функции времени. В дальнейшем при изучении кинематики и динамики часто используются понятия момент времени / и промежуток времени А/ . Под моментом времени I будем понимать число единиц из.мерения времени 1 (напри.мер, секунд), прошедших от некоторого начального момента (начала отсчета времени), например, от начала движения. Про.нгжутком времени будем называть число единиц времени At = — П, отделяющих два каких-нибудь  [c.89]

В кинематике рассматриваются две основные задачи 1) установление математических способов задания движения точки или тела относительно выбранной системы отсчета (т. е. способов определения иолонгения точки или тела в пространстве) или установление закона движения тела 2) определение по заданному закону движения тела всех кинематических характеристик этого движения (траекторий, скорости и ускорения точ1 и или линейных скоростей и ускорений точек тела, угловых скоростей и угловых ускорений тела).  [c.13]

В кинематике независимым переменным, аргументом, в функции которого определяются все другие величины, является время t. Механическим движением называют изменение с течением времени положения в пространстве точек и тел относительно какого-либо основного тела, с которым скреплена система отсчета. Кинематика изучает мез ащческое движение точек и тел независимо от сил, вызывающих эти движения. Другими словами, кинематика изучает геометрию движения. Всякое движение, как и покой, относительно и зависит от выбора системы отсч< та.  [c.70]

Угол и коэффициент сервиса. Зона сервиса не вполне определяет работоспособность роботосистем, так как положение точки С захвата в зоне сервиса еще не определяет возможную ориентацию захватоносителя в пространстве (см. звено ВС на рис. 30.1). Для оценки возможных положений захватоносителя мысленно зафиксируем точку С, оставив за звеном ВС возможность вращения в любом направлении. С точки зрения кинематики механизмов это соответствует размещению в точке С сферической кинематической пары, неподвижным звеном которой будем считать захватываемый предмет. При этом механизм манипулятора превращается в замкнутый пространственный многозвенный механизм или жесткую систему звеньев. Если такой механизм обладает подвижностью, отличной от нулевой, то звено ВС может рассматриваться как кри-  [c.504]

Кинематика оформилась как самостоятельная наука сравнительно недавно. Уже Даламбер указал на важность изучения законов движения как такового. Но первый, кто показал необходимость предпослать динамике теорию геометрических свойств движения тел, был Ампер. Эти свойства были представлены в 1838 г. Факультету наук в Париже Понселе. В этом представлении содержались, в частности, и теоремы о непрерывном перемещении твердого тела в пространстве, за исключением понятия мгновенной винтовой оси, которое было введено Шалем. Формулы, дающие вариации координат точек движущегося в пространстве тела, принадлежат Эйлеру (Берлинская Академия, 1750). Кинематика допускает многочисленные геометрические приложения. К ним относится, например, метод Роберваля построения касательных, теория мгновенных центров вращения, введенная Шалем, частный случай которой был дан уже Декартом в связи с задачей о касательной к циклоиде. К ним же относятся установленные Шалем свойства систем прямых, плоскостей и точек, связанные с движением твердого тела и приводящие наиболее простым образом к понятию комплекса прямых первого порядка. В 1862 г. Резаль выпустил курс Чистой кинематики . С появлением этого курса кинематика окончательно утвердилась в качестве самостоятельной науки.  [c.56]

В V главе рассматриваются конечные перемещения твердого тела в пространстве, показано сложение и разложение конечных поворотов, а также решение ряда кинематических задач с применением принципа перенесения. Изложена разработанная автором теория определения положений пространственных механизмов, дано исследование механизмов с избыточными связями и показаны конкретные приложения. Заметим, что авторы работ по винтовому исчислению не использовали в явном виде принцип перенесения как метод общего подхода к пространственным задачам. Принцип перенесения, как правило, выявлялся индуктивным путем — винтовые формулы выводились в каждом, отдельном случае и затем, а posteriori, демонстрировалось их сходство с векторными, принцип же как таковой не использовался для вывода винтовых формул. А между тем, этот принцип приводит к эффективному методу решения пространственных задач, связанных с движением твердого тела, и позволяет заранее предвидеть качественный результат. Выясняется полная аналогия теорем и формул кинематики сферического движения с теоремами и формулами кинематики произвольного движения, если перейти от вещественных переменных к комплексным. Хорошо известна аналогия (хотя бы качественная) между кинематикой сферического движения и кинематикой плоского движения, ибо сферические движения в малом являются плоскими, а в большом могут быть отображены на плоскость с сохранением качественных и некоторых количественных соотношений. Отсюда следует, что любая теорема плоской кинематики имеет свой аналог в пространстве (с соответствующей заменой геометрических элементов). На основании этого соображения возникает, например, пространственное обобщение известной формулы и теоремы Эй-лера-Савари, пространственное обобщение задачи Бурместера о построении четырехзвенного механизма по пяти заданным положениям звена и др.  [c.9]



Смотреть страницы где упоминается термин Кинематика в пространстве : [c.55]    [c.364]    [c.397]    [c.24]    [c.36]    [c.131]    [c.14]    [c.191]    [c.9]    [c.356]    [c.59]   
Смотреть главы в:

Механика  -> Кинематика в пространстве


Механика (2001) -- [ c.55 ]



ПОИСК



Геометрия и кинематика фазового пространства

Единицы пространства Единицы величин кинематики

Единицы пространства. Единицы величин кинематики . Единицы величин динамики

Кинематика

Кинематика в пространстве—времени. 4-импульс

Кинематика и статика материальной точки на плоскости и в пространстве



© 2025 Mash-xxl.info Реклама на сайте