Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория Принцип Сек-Венана

До сих пор рассматривались только задачи кручения Сен-Венана, т. е. деформация стержня предполагалась не зависящей от г. Очевидно, что для полной реализации кручения Сен-Венана механические граничные условия на обоих концах, а именно уравнения (6.1) и (6.2), должны находиться в точном соответствии с распределением напряжений, получаемых из решения задачи Сен-Венана. Если стержень конечной длины нагружается крутящими моментами, приложенными произвольным образом на концах стержня, то распределение напряжений в стержне может отличаться от предсказываемых теорией Сен-Венана. Однако, согласно принципу Сен-Венана, упомянутому во введении к этой части, распределение напряжений в таком стержне будет отклоняться от даваемых теорией Сен-Венана лишь локально в окрестности концов стержня. Протяженность области этого отклонения вдоль оси г имеет порядок поперечных размеров стержня, так что теория кручения Сен-Венана может успешно применяться для областей, далеких от концов стержня. Приближенные решения для задачи кручения стержня конечной длины были получены различными авторами с помощью вариационных методов [2, 4].  [c.166]


Определяя напряжения при растяжении, сжатии и при других видах деформаций, в сопротивлении материалов, а также в теории упругости широко пользуются следуюш,им весьма важным положением, носящим название принципа Сен-Вена-на если тело нагружается статически эквивалентными системами сил, т. е. такими, у которых главный вектор и главный момент одинаковы, и при этом размеры области приложения нагрузок невелики по сравнению с размерами тела, то в сечениях, достаточно удаленных от мест приложения сил, напряжения мало зависят от способа нагружения.  [c.87]

Указанное положение было введено в теорию упругости Сен-Вена-ном и называется принципом Сен-Венана. Коротко он может быть сформулирован так в точках сплошного тела, достаточно удаленных от мест приложения локальных нагрузок, напряжения мало зависят от распределения этих нагрузок и определяются лишь величиной их статических эквивалентов (сил и моментов).  [c.48]

Принцип Сен-Венана хотя и не имеет строгого доказательства, но подтверждается опытом решения многочисленных задач. Им пользуются для получения приближенных решений, заменяя заданные условия на поверхности статически эквивалентными, по такими, для которых решение задачи теории упругости упрощается. Это называют иногда смягчением граничных условий но принципу Сен-Венана.  [c.48]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]


Эффективное решение указанных в 34 граничных задач упругого равновесия в общем случае представляет большие трудности. Принцип Сен-Венана в этом отношении занимает особое место в теории упругости. Благодаря этому принципу в настоящее время мы располагаем решениями многочисленных задач теории упругости, ибо принцип Сен-Венана позволяет смягчить граничные условия заданная система сил, приложенная к небольшой части упругого тела, заменяется другой, удобной для упрощения задачи, статически эквивалентной системой сил, приложенной к той же части поверхности тела.  [c.89]

В третьей главе обсуждается постановка граничных и начально-граничных задач теории упругости, доказывается их единственность. Рассмотрению двумерных задач предшествует формулировка принципа Сен-Венана и его доказательство в случае нагружения цилиндрического стержня. Далее вводятся общие представления смещений через гармонические и через волновые функции, позволяющие свести некоторые важные задачи теории упругости к одной или нескольким последовательно решаемым классическим краевым задачам. Обстоятельно рассмотрены качественные вопросы, связанные с понятием сосредоточенной силы, нерегулярных решений задач теории упругости, возникающих при наличии на границе угловых линий, конических точек и т. п. Указанные решения легли в основу постановок задач механики хрупкого разрушения.  [c.7]

Заметим, что непосредственно из анализа решения частных краевых задач теории упругости (например, из решения задачи для полупространства) было обнаружено, что нагрузки, статически эквивалентные нулю, вызывают вне области порядка участка интегрирования напряжения и перемещения, существенно меньшие, чем при неуравновешенности сил. Это обстоятельство (в сочетании со специальными исследованиями) послужило основанием для появления уже общей формулировки принципа Сен-Венана ), который сводится к трем положениям  [c.264]

Принцип Сен-Венана кроме задач кручения и изгиба используется также при построении теории для плоского напряженного состояния (см. 4), когда для пластинки распределение нагружения по боковой поверхности не учитывается, а сводится к результирующим характеристикам. Другой подход имеет место в задачах изгиба пластинок (и, более того, в теории оболочек). Здесь игнорирование распределения напряжений является следствием гипотез, положенных в основу той или иной теории (как, например, для гипотезы прямых нормалей). В этом случае краевые условия в напряжениях сводятся к изгибающим моментам, крутящему моменту и перерезывающим силам.  [c.265]

Остановимся на принципе Сен-Венана для динамических задач теории упругости [202], где рассмотрена одна частная задача специального вида. Изучалась кусочно-однородная среда (совокупность полос из одного материала, разделенных полосами из другого материала с существенно меньшими значениями упругих постоянных). К торцам первой группы полуполос была приложена статически эквивалентная нулю динамическая нагрузка. Из анализа точного решения задачи было установлено, что напряжения отличны от нуля не только в области, непосредственно примыкающей к участку нагружения, но также и в определенной (малой по протяженности) зоне, примыкающей к волновому фронту.  [c.265]

Определяя напряжения при растяжении, сжатии и при других видах деформаций, в сопротивлении материалов, а также в теории упругости широко пользуются следующим весьма важным положением, носящим название принципа Сен-Венана если- тело нагружается статически эквивалентными системами сил, т. е. такими, у которых главный вектор и главный момент одинаковы, и при этом размеры области приложения нагрузок невелики по сравнению с размерами тела, то в сечениях, достаточно удаленных от мест приложения сил, напряжения мало зависят от способа нагружения. Общего теоретического доказательства принцип Сен-Венана не имеет, но его справедливость подтверждается многочисленными теоретическими и экспериментальными исследованиями. Поясним этот принцип на следующем примере.  [c.95]


Таким образом, напряжения (5.24), полученные на основании гипотезы плоских сечений, подтверждаются теорией упругости, когда сила Р распределена по торцу по такому же закону, как и касательные напряжения При другом законе распределения силы Р выражения для напряжений будут иными, но на основании принципа Сен-Венана значительная разница будет только вблизи торца.  [c.68]

При выводе формул для чистого изгиба прямого стержня не было сделано произвольных допущений и найденное решение в этом смысле можно рассматривать как точное. Однако следует иметь в виду, что в рассматриваемой задаче не конкретизирован характер распределения внешних сил. Считается только, что во всех случаях эти силы сводятся к равнодействующим моментам, приложенным к торцам стержня. Решение будет точным только для случая, если внешние силы на торцах распределены по тому же линейному закону, что и во всех поперечных сечениях. Практически это условие, понятно, никогда не соблюдается, и в окрестности торцевых сечений законы распределения напряжений далеки от тех, которые следуют из теории чистого изгиба. В соответствии с принципом Сен-Венана имеется возможность, однако, краевую зону исключить, как это показано, например, на рис. 4.18. Тогда для средней части стержня все выведенные выше формулы сохраняют свою силу и могут рассматриваться как точные.  [c.174]

Разберем это определение на примере деформации стержня, нагруженного через серьгу силой Р (рис. 1.14, а). Прочностной расчет стержня следует начать с замены действия на него серьги системой сил, распределенной по поверхности контакта, след которой АА, образующейся в результате их взаимной деформации. На рис. 1.14,6 схематически показана такая замена. Значение поверхностной интенсивности в каждой точке поверхности контакта может быть получено только методами теории упругости как результат решения сложной математической задачи. Такую задачу следует решать, если представляют интерес напряженное и деформированное состояния в заштрихованной области стержня. Для их определения за пределами этой области следует заменить распределенную нагрузку равнодействующей (рис. 1.14, в), величина которой элементарно находится из условия равновесия серьги (рис. 1.14, г). По принципу Сен-Венана, деформированное и напряженное состояние бруса за пределами заштрихованных областей в схемах нагружения бив будут практически одинаковы.  [c.22]

В чем смысл принципа Сен-Венана и каково его значение для решения задач теории упругости  [c.63]

Постановка задач теории упругости. Уравнение Клапейрона. Теорема единственности решения задач теории упругости. Принцип Сен-Венана  [c.341]

Принцип Сен-Венана вытекает из следующего общего свойства решений задач теории упругости. Если в какой-либо малой по сравнению с размерами всего тела части А приложена статически уравновешенная система сил, то она вызывает в нем напряжения, очень быстро убывающие по мере удаления от А. Допустим, что мы зажимаем тисками проволоку, причем концы тисков сжимают проволоку так, что действующая на нее система сил уравновешена. Тогда очевидно, что, как бы ни были велики эти силы (они даже могут перерезать проволоку), они почти не вызовут напряжений в основной мае- се проволоки вне области, непосредственно примыкающей к месту защемления.  [c.349]

Принцип Сен-Венана позволяет получать приближенные решения различных задач теории упругости с помощью решений аналогичных задач для частных распределений действующих сил.  [c.350]

Для развиваемой ниже теории трещин в хрупких телах, в соответствии с принципом Сен-Венана, для правильного определения решений упругой задачи (на основании уравнений импульсов и уравнений совместности для поля состояний упругого тела в целом) нет необходимости вводить действительные или искусственные подходящие внутренние силы сцепления на малых участках уже реализованных бортов разрыва перемещений (вне 2) как внешние макроскопические поверхностные силы, входящие в граничные условия.  [c.538]

Основные параметры GjE) i и (1—v) / играют важную роль и в других оценках в связи со следующим обстоятельством. Идеализированная теория предсказывает, что возмущения напряженного состояния могут распространяться без затухания бесконечно далеко вдоль волокна или нормальной линии, что противоречит известному принципу Сен-Венана. Анализом точных решений было установлено, что такое распространение возмущений без затухания можно интерпретировать как распространение на расстояние порядка Lj GIE) i вдоль волокон и  [c.298]

Принцип Сен-Венана, как и все прочие принципы, в общем виде не доказывается, хотя в ряде частных случаев полностью подтверждается на примерах решения задач методами теории упругости.  [c.59]

Принцип Сеп-Венана применим не только в случае растяжения или сжатия стержня и не только к телам, имеющим форму стержня. Он сохраняет силу и в других случаях, но до сих пор не получил строгого обоснования однако он подтверждается многочисленными примерами исследований напряженного состояния, выполненными методами теории упругости, и измерением деформации при опытах.  [c.103]

Если стержень прямоугольный и находится в условиях плоской задачи, то легко показать, что полученное таким путем решение является точным в смысле теории упругости и выполнения граничных условий в соответствии с принципом Сен-Венана.  [c.134]

Сен-Венана принцип I (2-я) — 189 Сен-Венана-Мизеса теория пластичности I (2-я) — 192 Сенные прессы 12— 192, 193 Сенные тюки—-Вес — Зависимость от влажности 12 — 193 Размеры 12—193 Сеноуборка — Механизация 12—164 Сеноуборочные машины 12—164—193 Сепараторы винтовые Змейка 12—126 --для пылевидного топлива 13— ПО Размеры 13—110  [c.259]


Подставив эти значения постоянных в формулы (б), придем к формулам (а). Таким образом, выражения (а) для напряжений, полученные в сопротивлении материалов, удовлетворяют всем уравнениям теории упругости и статическим граничным условиям на трех гранях балки. Если касательные силы Ру распределены по торцу по какому-либо другому закону, то согласно принципу Сен-Венана существенная разница в напряжениях будет только в области, близкой к торцу.  [c.358]

Формулируя граничные условия, полезно иметь в виду широко применяемый при решении задач теории упругости принцип смягчения граничных условий Сен-Ве гана. Пусть на части поверхности тела, малой по сравнению со всей поверхностью, действуют распределенные силы (рис. 102, а, б). Для упрощения задачи заменим эти силы статически эквивалентной системой сил, приложенной к той же части поверхности тела (рис. 102, в). Статическая эквивалентность понимается в смысле совпадения главного вектора и главного момента для двух систем сил. Согласно принципу Сен-Венана напряжения и деформации, вызванные этими системами сил, мало отличаются в точках, достаточно удаленных от области приложения сил. Определение же напряженно-де-формированного состояния в области приложения сил составляет так называемые контактные задачи.  [c.246]

Всякую сколько-нибудь сложную практическую задачу удается довести до окончательного результата только с помощью целого ряда дополнительных упрощающих допущений. Постановку и решение типичных задач при небольшом числе четко сформулированных дополнительных упрощающих допущений (гипотез) обычно относят к прикладной теории упругости. Например, в задачах расчета тонкостенных конструкций, схематизируемых набором оболочек и пластин, чрезвычайно важную роль играют гипотезы Кирхгофа—Лява именно на этих гипотезах построены классические теории пластин и оболочек. Основная цель настоящей главы — на простых примерах познакомить читателя с гипотезами Кирхгофа—Лява, используемыми в большинстве остальных разделов книги. Кроме того, в этой главе рассмотрена плоская задача теории упругости и принцип Сен-Венана.  [c.34]

Известны случаи, когда принцип Сен-Венана не может быть применен (тонкостенные стержни, резко анизотропные конструкции и т. п.), но для плоской задачи теории упругости применение этого принципа полностью оправдано,  [c.45]

Но нужно четко сознавать, что из полученного решения абсолютно ничего нельзя узнать о распределении напряжений непосредственно вблизи торцов полосы для этого необходимо располагать дополнительной информацией о способах приложения нагрузки на левом торце и закрепления правого торца и, имея такую информацию, решать неизмеримо более сложную прямую задачу теории упругости. Это замечание относится ко всем решениям, полученным на основе принципа Сен-Венана.  [c.46]

Таким образом, речь идет о возможности замены, при оговоренных требованиях статической эквивалентности и малости участка нагружения, одних краевых условий другими. Сознательно или бессознательно та или иная идеализация краевых условий всегда используется при решении (корректно поставленных) задач математической физики. В задачах теории упругости это тем более неизбежно, что детали распределения поверхностных сил чаще всего неизвестны, а возможность замены его другим распределением с теми же интегральными свойствами представляется интуитивно приемлемой. Вместе с тем ясно, что приведенную формулировку принципа Сен-Венана, имеюш.ую лишь качественный характер, следует дополнить возможными количественными оценками.  [c.164]

Упомянутые выше критические выступления в печати по-видимому связаны с тем, что их авторы ошибочно отнесли понятие о коэффициенте восстановления к числу общих законов механики. Кроме того, они неверно представляют область явлений, подчиненных законам классической механики. Об этом свидетельствует выдержка из монографии Е. В. Александрова и В. Б. Соколинского Одни авторы, а их большинство, базируются на принципах классической механики Ньютона. Другие— исходят из основных положений теории упругости и опираются на теорию Сен-Венана. Первые считают, что тела абсолютно твердые... >.  [c.20]

При решении задач теории упругости часто обращаются к принципу Сен-Венана. Если при решении задачи граничные условия задаются точно согласно истинному распределению сил, то решение может оказаться весьма сложным. В силу принципа Сен-Венана можно, смягчив граничные условия, добиться такого решения, чтобы оно дало для большей части тела поле тензора напряжений, очень близкое к истинному. Определение тензора напряжений в месте приложения нагрузок составляет особые задачи теории упругости, называемые контактными задачами или задачами по исследованию местных напряжений. На рис. 12 показаны две статически эквивалентные системы сил одна в виде сосредоточенной силы Р, перпендикулярной к плоской границе полубесконечной пластинки, а другая — в виде равномерно распределенных на полуцилиндриче- Кой поверхности сил, равнодействующая которых равна силе Р и перпендикулярна к границе пластинки. В достаточно удаленных  [c.88]

Большое количество задач теории упругости решается с использованием принципа локальности эффекта самоуравновешенных внешних нагрузок—принципа Сен-Венана. Согласно этому принципу, если в какой-либо малой части тела приложена уравновешенная система сил, то она. вызывает в теле напряжения, очень быстро убывающие по мере удаления от этой части (экспоненциальный характер затухания напряжений).  [c.6]

Разделы, касающиеся метода фотоупругости, двумерных задач в криволинейных координатах и температурных напряжений, расширены и выделены в отдельные новые главы, содержащие многие методы и решения, которых не было в прежнем издании. Добавлено приложение, относящееся к методу конечных разностей, в том числе к методу релаксации. Новые параграфы, включенные в другие главы, относятся к теории розетки датчиков деформаций, гравитационным напряжениям, принципу Сен-Венана, компонентам вращения, теореме взаимности, общим решениям, приближенному характеру решений при плоском напряженном состоянии, центру кручения и центру изгиба, концентрации напряжений при кручении вблизи закруглений, приближенному исследованию тонкостенных сечений (например, авиационных) при кручении и изгибе, а также к круговому цилиндру при действии пояскового давления.  [c.14]

Так как и у) =0 на конце х = Q, го и — Q всюду. Заметим, что условия для перемещений в заделке удовлетворяются точно, а не приближенно, как это имеет место в классической теории упругости согласно принципу Сен-Венана см., например, Лех-ницкий [20]).  [c.294]

Теория упругости богата не только множеством решенных задач. Трудами Пуассона, Сен-Венана, Клебша созданы основы механики деформируемых систем и заложены принципы, соблюдение которых стало нормой во всех дисциплинах, прямо или косвенно связанных с вопросами прочности.  [c.10]

Осевые нагрузки, приложенные к площадкам контакта, не являются самоуравновешенными нагрузками. Позтому зона затухания вызванных нмн напряжений уже не определяется принципом Сен-Венана, а зависит от характера приложения осевых и уравновешивающих нагрузок, создающих в большей части конструкции напряжения и деформации, соизмеримые с напряжениями и деформациями на площадках контакта. Однако так как размеры площадок малы по сравнению с расстояниями между местами приложения нагрузок (точка А н В во фланце крышки, Д и С во фланце корпуса, Ак Е — в нажимном кольце см. рис. 3.1) и с размерами сечения фланцев, то в соответствии с указанным принципом зона местного возмущения напряженного состояния, т.е. зона перехода разрывных и нелинейных эпюр напряжений и перемещений в непрерывные и линейные, совпадает с рассмотренной выше зоной затухания напряжений от моментных нагрузок. Поэтому расчетные участки для определения по теории упругости местных коэффициентов податливости от осевых нагрузок выбираются аналогично предыдущему случаю. Граничные условия в местах соединения этих участков с остальной частью конструкции уже не являются нулевыми, однако они могут быть определены приближенно методом 1 гл. 3 для конструкции, расчлененной по местам контакта.  [c.135]


В теории гидродинамического подобия методика приближемного м оделирований основывается на некоторых свойствах вязкой жидкости. К числу последних относится свойство стабильностн потока вязкой жидкости 1[Л. 18], аналогичное принципу Сен-Венана из теории упругости.  [c.166]

Напряженное состояние в составных цилиндрических оболочках с отдельно стоящими ребрами наиболее просто оценивается при-бл1женным методом, основанным на элементарной теории плоских сечений. Этот метод не учитывает краевые эффекты и влияние деформаций сдвига. Согласно принципу Сен-Венана можно ожидать, что вычисленные напряжения близки к действительным только в сечениях оболочки, достаточно удаленных от ее торцов. В случае, если длина оболочки соизмерима с ее диаметром, необходимы более точные методы расчета напряженно-деформированного состояния конструкции, полученные с применением моментной теории.  [c.163]


Смотреть страницы где упоминается термин Теория Принцип Сек-Венана : [c.34]    [c.130]    [c.160]    [c.82]    [c.147]    [c.151]    [c.265]    [c.11]    [c.369]    [c.681]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.29 , c.32 , c.34 ]



ПОИСК



Принцип Сен-Вена

Принцип Сен-Венана,

Сен-.Вена

Сен-Венан



© 2025 Mash-xxl.info Реклама на сайте