Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пуассона уравнение движения относительно

Завершающим этапом построения гидродинамики вязкой жидкости стала работа Дж. Г. Стокса 1845 г. Стокс дал, независимо от Пуассона и Сен-Венана, строгий вывод уравнений движения вязкой жидкости на основе линейной зависимости шести компонент напряжений от шести компонент скоростей деформации жидкой частицы. Жидкость Стокс определял как среду, в точках которой разность давления на произвольно ориентированной площадке и среднего давления, которое имело бы место при относительном равновесии, определяется лишь скоростью относительной деформации частицы. В результате Стокс пришел к уравнениям, содержащим, вообще говоря, два коэффициента вязкости. Однако на основании ряда соображений (на которых он впоследствии не настаивал) Стокс высказал предположение, эквивалентное требованию равенства нулю второго коэффициента вязкости, и выписал уравнения в виде  [c.68]


Основы учения о движении вязкой жидкости были заложены в 1821 г. французским ученым Навье и получили свое завершение в 1845 г. в работах Стокса (1819—1903), который сформулировал закон линейной зависимости напряжений от скоростей деформаций, представляющий обобщение простейшего закона Ньютона, и дал в окончательной форме уравнения пространственного движения вязкой жидкости, получившие наименование уравнений Навье — Стокса. Используя специальные молекулярные гипотезы относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1821 г. Навье, в 1831 г. Пуассон (1781—1846) и в 1843 г. Сен-Венаи (1797—1866). Урав " нения Навье —Стокса в криволинейных координатах в 1873 г. вывел Д. К- Бобылев.  [c.26]

Здесь К (к) и Е к) — полные эллиптические интегралы первого и второго рода. Тогда уравнения движения в переменных (za,Pa) записываются в гамильтоновой форме относительно введенной скобки Пуассона  [c.369]

Бесконечно малые канонические преобразования. Константы движения и свойства симметрии. В связи с дальнейшим рассмотрением скобок Пуассона мы введем понятие бесконечно малых канонических преобразований. Как и в случае бесконечно малых поворотов, это будут такие преобразования, при которых переменные q, р изменяются на бесконечно малые величины. (Поэтому все расчеты мы будем производить лишь с точностью до членов первого порядка малости относительно этих величин.) Уравнения такого преобразования можно записать в виде  [c.285]

Пуассон в одном из своих мемуаров изложил весьма общую теорему, на которой он основал новый метод изложения теО рии вариации произвольных постоянных. Хотя эта теу>ема сама по себе представлялась чрезвычайно интересной, Пуассон удовольствовался применением ее к специальной цели, которую он себе поставил, не отметив даже того обстоятельства, что ее можно применить и в других случаях. Спустя больше чем тридцать лет после этого, уже в момент смерти Пуассона, внимание математиков снова было привлечено к этому вопросу знаменитым Якоби, который указал на теорему Пуассона как на замечательное достижение, по его мнению, — наиболее важное во всей науке о движении. Впрочем, Якоби не подкрепил какими-либо выводами своего утверждения, относительно которого, быть может, мы найдем более подробные указания в его посмертных трудах. Цель настоящей статьи заключается в том, чтобы изложить теорему Пуассона и указать ту пользу, какая может быть из нее извлечена для интегрирования дифференциальных уравнений механики.  [c.566]


Функция тока Р (х, у) этого движения должна удовлетворять обобщенному уравнению Пуассона относительно функции тока Т  [c.343]

Канонические координаты для относительного движения в задаче трех вихрей. Представление уравнений относительного движения трех вихрей в гамильтоновой форме со скобкой Ли-Пуассона (3.4) и Ли-алгебраическая классификация позволяют естественным образом определить в этом случае наиболее подходящие канонические переменные.  [c.50]

Уравнения относительного движения. Гамильтониан (3.5) системы (3.4), описывающий движение М точечных вихрей, зависит лишь от относительного расстояния между вихрями. Естественно желание получить систему уравнений, в которую входят лишь расстояния между вихрями независимо от их абсолютного положения на плоскости. Та кая система впервые установлена в [165] независимый вывод таких уравнений получен недавно в [54]. Для вывода этих уравнений целесообразно воспользоваться методикой, основанной на скобках Пуассона. Нетрудно показать, что для любой функции Ч (ж , у ), а— 1,2,..., Nf не содержащей явно времени, имеет место равенство  [c.78]

В этой главе прежде исего будет рассказано о том, как можно описать движение механической систел1ы с 5 стеиенями свободы в 25-мерном фазовом пространстве. Канонические уравнения выводятся из уравнений Лагранжа, Канонические преобразования обсуждаются весь 1а кратко, более подробно рассматриваются свойства скобок Пуассона, их инвариантность относительно канонических преобразований, их значение для отыскания интегралов движения и связь с бесконечно малыми контактными преобразованиями. Бегло рассмотрен случай движения заряженной частицы Б электромагнитном поле. В последнем параграфе принцип наименьшего действия выводится из вариационного принципа Гамильтона и обсуждается вопрос о том, как молено рассматривать время на равных правах со всеми остальными координатами q .  [c.123]

С опубликованием в 1927 г. совместной работы А. Эйнштейна и Я. Гром-мера начинается история проблемы движения в общей теории относительности. Рассматривая теорию гравитации Ньютона как теорию поля, ее можно разбить на две логически независимые части во-первых, на уравнение Пуассона для поля... и, во-вторых, на закон движения материальной точки Электродинамика Максвелла — Лоренца также базируется на двух логически независимых положениях во-первых, на уравнениях поля Максвелла — Лоренца, определяющих поле по движению электрически заряженной материи, и, во-вторых, на законе движения электрона под действием силы Лоренца со стороны электромагнитного поля . Эйнштейн и Громмер показали, что нет необходимости к уравнениям поля добавлять уравнения движения для пробной частицы с массой нуль. Уравнения движения частицы могут 374 быть выведены из релятивистских уравнений поля. В работах А. Эйнштейна, Л. Инфельда и К. Д. Гофмана (1938—1940) задача была обобщена. В 1939 г. Б. А. Фок независимо вывел ньютоновские уравнения движения из уравнений движения и уравнений поля. Метод Фока был развит А. Пацапетру и  [c.374]

Эти девять кинематических уравнений (они называются обобщенными уравнениями Пуассона) вместе с тремя динамическими уравнениями Эйлера (14.60) составляют полную систему дифференциальных уравнений движения ИСЗ относительно центра масс. В этих уравнениях 1х> 1у, г и ц — известные постоянные величины, R и со — в общем случае известные функции времени, определяемые из кеплерова движения центра масс спутника, Q . Р > Yft (k=, 2, 3) —искомые функции времени. Не останавливаясь на методах решения этих уравнений (в общем виде они решаются только для частных случаев), заметим, что шесть первых интегралов нам известны —это равенства (14.56).  [c.339]

Замечание 2. Закон сохранения вектора момента относительно пространства можно выразить, сказав, что каждая компонента этого вектора в какой-либо системе координат на пространстве 9 сохраняется. Мы получаем, таким образом, множество первых интегралов уравнений движения твердого тела. В частности, каждому элементу алгебры Ли g соответствует линейная функция на пространстве g и, следовательно, первый интеграл. Скобки Пуассона первых интегралов, заданных функциями на д, как легко сосчитать, сами будут функциями на д. Мы получаем, таким образом, (бесконечномерное) расширение алгебры Ли д, состояп].ее из всевозможных функций на д. Сама алгебра Ли д вложена в это расширение как алгебра Ли линейных функций на д. Конечно, функционально независимы из всех этих первых интегралов фазового потока в 2п-мерном пространстве только п штук. В качестве п независимых интегралов можно взять, например, п линейных функций на д, образующих базис в д.  [c.292]


Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]

С этой точки зрения идея использования гамильтоновского подхода для создания эффективных асимптотических методов представляется весьма привлекательной. Эта идея исходит из того, что любая гамильтоновская формулировка уравнений движения предполагает задание двух непременных атрибутов скобки Пуассона и гамильтониана системы. Причем, если гамильтониан системы фиксирует в фазовом пространстве гиперповерхность, на которой лежит динамическая траектория системы, то скобка Пуассона определяет в качестве своих аннуляторов все остальные инварианты движения. По существу, это означает, что в скобках Пуассона содержится вся информация относительно внутренних свойств симметрии, ответственных за динамическую индивидуальность системы. Поэтому, если мы хотим избежать потери этих свойств, мы должны использовать только такие приближения, которые не затрагивают скобки Пуассона. Таким образом, объектом приближений может быть только одна величина — гамильтониан системы.  [c.180]

Из результатов, полученных Кирхгофом в механике твердых деформируемых тел, отметим слёдующие обоснование теории пластин двумя гипотезами (ныне носящими имя автора), вывод формулы для потенциальной энергии деформации пластины, энергетический вывод уравнения изгиба пластины, приведение в соответствие числа граничных условий и порядка дифференциального уравнения в теории пластин, исследование колебаний пластин и стержней переменного сечения, построение геоме рически нелинейной теории изгиба пластин, вывод нелинейных уравненнй равновесия для пространственного гибкого стержня, формулирование динамической аналогии (сопоставление уравнения равновесия стержня и уравнения движения твердого тела относительно неподвижной точки), экспериментальное определение величины коэффициента Пуассона с целью выявления правильной точки зрения в дискуссии о числе независимых упругих постоянных в изотропном теле.  [c.47]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]


Найти ошибку в следующих правдоподобных рассуждениях. Материальная точка массы т начинает движение в плоскости yz ш СОСТОЯНИЯ нокоя в однородном ноле тяжести, силовые линии которого параллельны оси Oz. Следовательно, импульс точки рх, сохраняется, т. е. рх = onst. Производная момента имнульса Коу точки относительно оси О у равна нулю, так как единственная внешняя сила — сила тяжести — пересекает ось О у и, следовательно, не создает момента относительно этой оси. Поэтому Коу будет первым интегралом, т. е. Коу = onst нри движении точки. Используя теорему Якоби-Пуассона, получим, что pz = onst, так как рх f Oy) = Pz-Этот вывод находится в очевидном противоречии с уравнением изменения имнульса Pz = mg.  [c.209]

Функции Рг и Р2 являются интегралами уравнений (1.6) с любым гамильтонианом Н. Для уравнений Эйлера-Пуассона они имеют естественное физическое и геометрическое происхождение. Интеграл Р представляет собой проекцию кинетического момента на неподвижную вертикальную ось и называется в динамике твердого тела интегралом площадей, он связан с симметрией относительно вращений вокруг неподвижной вертикальной оси. Происхождение интеграла Р2 = onst чисто геометрическое — это квадрат модуля единичного орта вертикали. Для действительных движений значение константы этого интеграла равно единице 2 = 7 = 1-  [c.86]

При решении задач об изэнтропическом движении газа с относительно слабыми ударными волнами, когда изменением энтропии в ударных волнах пренебрегается, уравнения ударного перехода (4.12) и (4.13) остаются прежними, а вместо уравнения адиабаты Гюгонио (4.14) или (4.18) к ним добавляется уравнение адиабаты Пуассона S = So = onst. Последнее при  [c.85]


Смотреть страницы где упоминается термин Пуассона уравнение движения относительно : [c.14]    [c.297]    [c.911]    [c.118]    [c.122]    [c.29]    [c.214]   
Динамика системы твердых тел Т.2 (1983) -- [ c.0 ]



ПОИСК



Движение относительное

Движение по Пуассону

Относительность движения

Пуассон

Пуассона уравнение

Уравнения Пуассона си. Пуассона уравнение

Уравнения относительно го движения

Уравнения относительного движения



© 2025 Mash-xxl.info Реклама на сайте