Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамическая траектория систем

Проблема геометризации основных соотношений динамики, вытекавшая из глубокого внутреннего родства теории поверхностей и проблемы отыскания динамических траекторий для различных механических систем, вызвала многочисленные исследования.  [c.840]

В данном разделе затрагиваются вопросы существования замкнутых кривых из траекторий систем дифференциальных уравнений на двумерных поверхностях. Рассматриваемые фазовые кривые стягиваются в точку по фазовой поверхности. Таким образом, искомые замкнутые фазовые траектории являются подмножеством той части фундаментальной фуппы данной двумерной фазовой поверхности, представляющей тривиальную компоненту, которая существует для любого гладкого фазового двумерного многообразия. Замкнутые траектории всегда являются ключевыми (по крайней мере для систем на двумерных многообразиях), поскольку от их расположения зависит глобальное расположение многих остальных фазовых траекторий. Последний факт объясняется тем, что фазовые кривые, состоящие из траекторий динамических систем на двумерных многообразиях и стягиваемых по ним в точку, разделяют фазовое многообразие на две части (см. также [13, 176]).  [c.81]


Теорема 75. Если схемы двух динамических систем /) и J), рассматриваемых соответственно в замкнутых областях G и G , тождественны с сохранением ориентации и направления по t, то топологические структуры разбиений областей G и G соответственно на траектории систем D и D тождественны с сохранением ориентации и направления по t.  [c.495]

Итак, при выполнении равенства к — Ь среди семейства траекторий имеется периодическая траектория (1.16), а все остальные траектории являются двоякоасимптотическими. Наличие гладких семейств двоякоасимптотических траекторий — характерный признак интегрируемых динамически с систем (ср. с [3, гл. 6 ,  [c.104]

Некоторые топологические соображения помогают наглядно представить, а затем и понять многомерное движение. Они естественно приводят к разностным уравнениям, т. е. к отображению динамической траектории системы на некоторое подпространство ее фазового пространства. В случае двух степеней свободы такие отображения дают простую и наглядную картину движения. Более того, использование отображений — обычно наиболее удобный путь проведения как аналитических и численных расчетов стохастического движения, так и математических доказательств существования различных типов траекторий. Вместе с тем регулярное движение, как мы видели в гл. 2, часто бывает удобно описывать дифференциальными уравнениями. Переход от дифференциальных уравнений (Гамильтона) к отображениям и обратно широко используется при анализе движения большинства нелинейных динамических систем.  [c.175]

В предыдущей главе, в рамках доказательства предельной теоремы, была показана возможность диагностики динамических управляемых систем в случае траекторных измерений с ошибкой ограниченной по модулю заданной функцией времени и в случае, если эта ошибка является случайной величиной, распределенной по нормальному закону с дисперсией а. Показано, что в этих случаях можно указать наилучшее число необходимых траекторных измерений, при которых возможно разделение траекторий неисправных систем, то есть точное определение происшедшей в системе неисправности.  [c.114]

Как уже было отмечено выше, исследование поведения динамической системы сводится к изучению поведения траекторий в фазовом пространстве Ф. Структура разбиения пространства Ф на фазовые траектории называется фазовым портретом рассматриваемой динамической системы. С геометрической точки зрения под структурой разбиения фазового пространства на траектории понимается геометрическая картина взаиморасположения фазовых траекторий в пространстве Ф. Следует отметить, что полное описание фазового портрета для произвольной динамической системы представляет собою очень сложную и до сих пор нерешенную проблему. Однако ряд основных особенностей этой структуры изучен, а для некоторых классов динамических систем в настоящее время получено полное описание фазового портрета.  [c.12]


Гармонический осциллятор, рассмотренный выше, представляет собою пример автономной консервативной системы второго порядка. Как мы видели, такая система обладает интегралом движения (обычно интегралом сохранения энергии). Фиксируя значение произвольной постоянной в интеграле движения, мы получаем динамическую систему с одномерным фазовым пространством, которое может представлять замкнутую или незамкнутую кривую, состоящую из одной или нескольких фазовых траекторий. Придавая произвольной постоянной различные значения, получим множество одномерных фазовых пространств, которые в совокупности образуют фазовое пространство консервативной системы второго порядка. В конечном итоге двумерное фазовое пространство этой системы оказывается разбитым на фазовые траектории. Замкнутая фазовая траектория соответствует, как известно, периодическому движению в системе.  [c.29]

Из всего многообразия динамических систем второго порядка полезно выделить системы, в которых может осуществляться периодическое изменение состояния системы. На фазовой плоскости периодическому движению соответствует замкнутая траектория. Если эта замкнутая траектория является одной из континуума вложенных одна в другую кривых, то мы имеем дело с консервативной системой. В такой системе период и амплитуда периодических колебаний зависят от начальных условий, а сама система является негрубой.  [c.46]

Теперь перейдем к доказательству требуемого утверждения об отсутствии фазовых траекторий, дважды пересекающих достаточно малую окрестность седлового состояния равновесия или периодического движения. Так как это утверждение лежит в основе сводимости исследования рассматриваемых динамических систем к рассмотрению конечного числа последовательностей точечных отображений, то сформулируем это утверждение в виде следующей теоремы.  [c.280]

Мы здесь не будем излагать дальнейшего материала по методам качественного рассмотрения динамических систем с помощью фазовой плоскости и по более подробному рассмотрению возможных типов особых точек и фазовых траекторий консервативных систем. Все это можно найти в [1 —3]. Приведенные здесь основные сведения и определения следует рассматривать лишь как напоминание об основах метода фазовой плоскости, которым (с соответствующими пояснениями) мы в ряде случаев будем пользоваться в дальнейшем.  [c.22]

Согласно широко распространенной гипотезе, предельное поведение траекторий типичной динамической системы на компактном многообразии описывается следующим образом. За конечное время каждая положительная полутраектория попадает в окрестность притягивающего множества — аттрактора. Если аттрактор достаточно массивен — отличен от конечного объединения особых точек и предельных циклов, — то поведение фазовых кривых на аттракторе и вблизи него хаотично. Аналогичная гипотеза имеется для диссипативных систем, фазовое пространство которых — компактное многообразие с краем, а поле системы направлено внутрь на краю.  [c.156]

Рассмотрим, например, динамическую систему на сфере с поглощающей областью, имеющей максимальный аттрактор в виде пары петель гиперболического седла (восьмерка, см. рис. Б9а). На фотографии, сделанной по описанному методу, получится положение равновесия и четыре интервала сепаратрис (рио. 59 6). Чем больше время съемки, тем меньше эти интервалы, поскольку относительное время, проводимое траекториями вблизи седла, растет. Вероятностно предельное множество в этом примере — вся восьмерка.  [c.158]

Результатами решения этих задач являются сведения о динамических нагрузках в элементах и звеньях системы привода, о пиковых значениях токов, напряжений, давлений в двигателях и системах управления, т. е. о величинах, определяющих работоспособность и надежность систем сведения о точности воспроизведения заданных траекторий и положений рабочих органов сведения о временах протекания переходных процессов сведения о характере колебательных процессов и т. д. Для обработки результатов моделирования и получения на их основе простых соотношений, связывающих показатели динамического качества системы привода с конструктивными параметрами ее элементов, применяется аппарат вторичных математических моделей (ВММ). Для получения ВММ исходная математическая модель (ИММ), т. е. система уравнений движения объекта, исследуется на ЭВМ по определенному плану при различных сочетаниях параметров. Зафиксированные в машинных экспериментах результаты обрабатывают либо методами множественного регрессионного анализа, либо с помощью алгоритмов распознавания образов. В первом случае получают количественные соотношения, позволяющие определять динамические показатели системы в функции ее параметров. Во втором случае получают выражения для качественной оценки соответствия изучаемого объекта заданному комплексу технических требова-  [c.95]


На эту систему воздействует большое число регулярных и случайных возмущений возмущение траектории управляемого полета вследствие инструментальных погрешностей измерительных элементов, системы регулирования параметров движения объекта, динамических погрешностей регулирования и др. инструментальные погрешности исчисления дальности комплекса наведения и др. возмущение траектории свободного полета объекта из-за ветра и других отклонений состояния атмосферы от нормальных условий и т. д.  [c.122]

Сравнительно простые но конструкции вибрационные машины представляют собой динамическую систему, в которой форма траектории, закон изменения скорости и,ускорения рабочего органа зависят не от геометрических размеров, звеньев, а От динамических параметров машины величин масс и жесткостей упругих элементов, характера возмущения, создаваемого приводом, факторов демпфирования и т. д.  [c.665]

Идея исследования состоит в применении метода усреднения к стохастическому дифференциальному уравнению (6.2). Полученные при этом эволюционные уравнения также оказываются стохастическими. Далее, в соответствии с асимптотическими методами, изложенными в гл. IV, принимается, что из устойчивости эволюционных уравнений следует устойчивость исходной стохастической системы. При этом остаются справедливыми теоремы Н. Н. Боголюбова о близости решений обеих систем на интервале порядка (/ — 1/Ро). с тем лишь отличием, что близость решений понимается здесь в смысле почти наверное [94, 106, 107]. Это предположение позволяет, исследуя условия асимптотической Р-устойчивости, устойчивости по вероятности и Р-ограниченности по моментам решений эволюционных уравнений, получить условия соответствующего типа устойчивости для исходной стохастической системы. Для исследуемого класса динамических систем (6.2) можно показать, что близость (в асимптотическом приближении) исследуемых процессов в смысле близости по моментам означает и близость выборочных траекторий процессов, например, в среднеквадратичном. Такой подход особенно удобно использовать при исследовании динамической устойчивости параметрических систем по выборочным траекториям в условиях неполной статистической информации или неопределенности о действующих на систему возмущений.  [c.233]

Рис. 89. Выборочные траектории движения систем с выключающимися связями при типовых динамических воздействиях Рис. 89. Выборочные <a href="/info/145625">траектории движения</a> систем с выключающимися связями при типовых динамических воздействиях
Рис. 92. Выборочные траектории движения комбинированных динамических систем Рис. 92. Выборочные <a href="/info/145625">траектории движения</a> комбинированных динамических систем
Постоянное увеличение скорости, дальности и времени полета КЛ аппаратов требует соблюдения высокой точности траектории движения при уменьшении веса и энергоемкости бортовых систем ориентации и стабилизации (веса и количества газобаллонов, моментных двигателей и т. д.). Эта цель может быть достигнута благодаря изготовлению аппаратов, у которых конструктивные оси являются главными осями инерции, т. е. путем динамического уравновешивания аппаратов.  [c.248]

Понятие Э. используется также в классич. механике ка характеристика хаоса динамического в системах с неустойчивостью движения—экспоненциальной расходимостью близких в нач. момент траекторий. Количественной мерой неустойчивости таких систем служит энтропия Крылова— Колмогорова — Синая, или АГ-энтропия. Для широкого класса систем АГ-энтропия выражается через положительные показатели Ляпунова по формуле  [c.618]

Традиционные методы геометрии, широко используемые в естественных науках, в том числе в материаловедении и механике деформируемых тел, основаны на приближенной аппроксимации структуры исследуемого объекта геометрическими фигурами, например линиями, отрезками, плоскостями, многоугольниками, многогранниками, сферами, метрическая и топологическая размерности которых равны между собой. При этом внутренняя структура исследуемого объекта, как правило, игнорируется, а процессы образования структур и их взаимодействия между собой и с окружающей средой характеризуются интегральными термодинамическими параметрами. Это, естественно, приводит к утрате значительной части информации о свойствах и поведении исследуемых систем, которые, в сущности, заменяются более или менее адекватными моделями. В некоторых случаях такая замена вполне оправданна. В то же время известны ситуации, когда использование топологически неэквивалентных моделей принципиально недопустимо. В частности, при изучении сложных динамических систем необходимо учитывать особенности топологии как тонкой структуры объектов, так и фазовых траекторий системы. Дробная метрическая размерность таких объектов не только характеризует их геометрический образ, но и отражает процессы их образования и эволюции, а также определяет динамические свойства.  [c.33]

Динамические качества привода как элемента системы управления оценивают не просто по его предельной скорости, а по качеству отработки им команд управления. От приводов с позиционным управлением требуется, чтобы рабочий орган переместился на заданный ход с заданной точностью за заданное время при отсутствии колебаний во время переходного процесса. Привод с контурным управлением должен с заданной точностью и за заданное время воспроизвести требуемую траекторию. Динамические и точностные показатели привода удобно оценивать по частотным характеристикам, показывающим, с каким искажением воспроизводит привод синусоидальные управляющие сигналы в зависимости от их частоты, а в случае нелинейных систем - и от амплитуды.  [c.561]


При определении динамического коэффициента интенсивности напряжений на стадии распространения трещины используется гипотеза о возврате кинетической энергии , на основании которой принимается, что кинетическая энергия движущихся масс образца, возрастая на начальной стадии распространения трещины, поглощает часть энергии упругой деформации, освобождаемой при росте трещины, тогда как на заключительной стадии, предшествующей остановке, она, уменьшаясь, возвращает в систему энергию, обеспечивая на этом участке дополнительный подвод энергии, что приводит к приблизительному постоянному уровню и постоянной скорости трещины на большей части ее траектории.  [c.74]

В настоящей главе вводится понятие полной схемы динамической системы, имеющей конечное число особых траекторий. В полную схему динамической системы как составные части входят полные схемы состояний равновесия и предельных континуумов. Полная схема дает исчерпывающее описание взаимного расположения особых элементов и полностью определяет топологическую структуру разбиения на траектории. Осиов-ной теоремой настоящей главы является следующая теорема если схема двух динамических систем В п В, рассматриваемая соответственно в замкнутых областях (т и О , тождественна с сохрансиием ориентации. и направления по 1, то топологические структуры разбиения областей С и С соответственно на траектории систем В п В тождествецны. Доказательство этой теоремы заключается в фактическом построении отождествляющего отображения, т. е. топологического отображения области С в С , при котором траектории систем В и В отображаются друг в друга.  [c.453]

Из физических соображений очевидно, что в дифференциальных уравнениях (3.1), описывающих движение реальной физической системы, ни один из учитываемых нами факторов не может оставаться абсолютно неизменным во времени. Следовательно, правые части уравнений (3.1), вообще говоря, изменяются вместе с входяпшми в них физическими параметрами. Однако если эти изменения достаточно малы, то, как показывает практика, физическая система как бы не замечает этих изменений, качественные черты ее поведения сохраняются. Поэтому, если мы хотим, чтобы уравнения (3.1) отобразили эту особенность, нужно придать им свойство грубости, а именно при малых изменениях параметров должна оставаться неизменной качественная структура разбиения фазовой плоскости на траектории. Тем самым выделится класс грубых динамических систем. Грубость динамической системы можно трактовать как устойчивость структуры разбиения ее фазового пространства на траектории по отношению к малым изменениям дифференциальных уравнений (3.1).  [c.44]

После этих общих вводных слов перейдем к изложению накопленных к настоящему времени сведений о мно омер-ных динамических системах. Это изложение, по необходимости выборочное, содержит в первую очередь факты, п люющие наибольшее значение для общего понимания особенностей многомерных динамических систем, трактуемых в первую очередь как особенности структуры разбиения на траектории ее фазового пространства.  [c.240]

Вернемся к рассмотрению многомерных динамических систем, описываемых гладкими дифференциальными уравнениями. Ранее были рассмотрены малые окрестности состояний равновесия и периодических движений. Естественным дальнейшим шагом является рассмотрение малых окрестностей нескольких фазовых траекторий, составляю-ш,их нечто целое. Одним из таких комплексов, рассмотрение которого приводит к нетривиальным результатам, является гомоклнническая структура [401.  [c.314]

Арансон С. X., Об отсутствии незамкнутых устойчивых по Пуассону траекторий и траекторий, Двоякоаснмптотическнх к двойному предельному циклу, у динамических систем первой степени негрубости на ориентируемых двумерных многообразиях. Мат. сб., 1968, 76, вып. 2, 214—230  [c.210]

Задачи динамики могут быть формулированы языком высшей геометрии, если связать каждую динамическую проблему с соответствующей формой метрической геометрии. В общем случае — это нериманова геометрия, причем конфигурационное пространство включает время в качестве координаты, равноправной с другими переменными. Тогда траектории механического движения тел будут представлены кратчайшими или геодезическими линиями такого метрического многообразия, в то время как волновые поверхности (или поверхности действия) становятся параллельными поверхностями. Геодезические же линии могут быть построены как ортогональные траектории к этим поверхностям. Тогда динамические процессы движения корпускулярных систем совпадают с задачей распространения света в оптически неоднородной среде.  [c.869]

Виды динамических систем. По характеру ур-ний и методам исследования Д. с. делят на классы. Конечномерные и бесконечномерные (распределённые) Д. с.—системы с конечномерным и бесконечномерным фазовым пространством. В конечно-мерно.м случае консервативные и диссипативные Д. с. — системы с сохраняющимся и несохраняющимся фазовым объёмом. Г амильтоновы системы с ф-цией Гамильтона, не зависящей от времени, образуют подкласс консервативных систем. У диссипативных систе.м с неогранич. фазовым нространством часто существует ограниченная область в нём, куда попадает навсегда любая траектория. Д. с. с н е п р е-рывным временем (потоки) и Д. С. с дискретным временем (каскады) дискретность времени иногда отражает существо реального процесса (дискретность моментов прохождения импульса через усилитель п оптическом квантовом генераторе, сезонность в экологии, смена поколений в генетике н т. д.). Грубые и пегрубые Д. с. понятие грубости (структурной устойчивости) характеризует качественную неизменность типа движения Д. с. при малом изменении её параметров. Значения параметров, при к-рых система перестаёт быть грубой, наз. б и ф у р-к а ц и о н н ы м II (см. Бифуркация). При размерности фазового пространства больше 2 могут существовать целые области в пространстве пара.метров, где Д. с. оказывается негрубой.  [c.626]

Выполнение условия (1) строго доказано лишь длн век-рых динаыич, систем с малым числом степенен свободы. Предполагается, что Р. характерно для ми. систем и отражает общее свойство неустойчивости (раа-беганвя) фазовых траекторий по отношению к малым возмущениям нач. условий. Р. обусловливает непредсказуемость и необратимость поведения динамич. системы хаос динамический). Р. соответствует представлению о характере движений в сложной динаыич. системе, требующем перехода к статистич. описанию, но не даёт строгого обоснования применимости методов статистич, механики.  [c.248]

Сложное поведение нелинейных колебат. систем наблюдалось (1920-е — 50 е гг.) задолго до осознания факта возможности существования стохастичности в таких системах (эксперименты Ван дер Поля и Ван дер Марка [1], двухдисковое динамо (2], распределённая система авторегулирования темп-ры [3]). Кроме того, хотя в то время существовали век-рые элементы матем. аппарата для описания нетривиального поведения траекторий динамических систем в фазовом пространстве (гомоклинич. структуры Пуанкаре [4]), однако представления о том, что детерииниров. системы могут вести себя хаотически, ещё не проникли ни в физику, ни в математику. Качественное изменение ситуации произошло в 1960-е гг. в связи с открытиями в математике [5—6] и компьютерными исследованиями моделей физ. систем.  [c.694]

Основные понятия. Пусть траектория L динамической системы задаётся отображением д (г)= Г ло. гДе х—совокупность координат точки в фазовом пространстве системы, 7 — оператор эволюции, преобразующий нач. состояние систе.мы с координатами Хд в состояние с координатами. v(/) в момент времени г. Траектория L устойчива по Ляпунову, если для сколь угодно малого е можно найти такое 5, что для любого нач. состояния. о, близкого к Хо, т, с. p(io.- o) всегда окажется р(Т о, Т хо)<е.. Здесь р(Х], Х2) — расстояние между точками. v, и л, в фазовом пространстве. Если  [c.254]


Ф ЗОВОЕ ПРОСТРАНСТВО в статистической физике, многомерное пространство, осями к-рого служат все обобщённые координаты и импульсы р-, ( =1, 2,. .., М) механич. системы с N степенями свободы. Т. о., Ф. п. имеет размерность 2N. Состояние системы изображается в Ф.п. точкой с координатами 51, р , i(fi, рц, а изменение состояния системы во времени—движением точки вдоль линии, называемой фазовой траекторией. Точки, соответствующие определ. значению энергии системы, образуют в Ф. п. (2JV- 1)-мерную поверхность, делящую пространство на две части — более высоких и более низких значений энергии. Поверхности разл. значений энергии не пересекаются. Траектории замкнуюй системы (с пост, значением лежат на этих поверхностях. В принципе траектория может быть рассчитана на основе законов механики, такой расчёт можно осуществить практически, если число частиц системы не слишком велико. Для статистич. описания состояния системы из мн. частиц вводится понятие фазового объёма (элемента объёма Ф. п.) и функции распределении системы — вероятности пребывания точки, изображающей состояние системы, в любом элементе фазового объёма. Понятие Ф.п.— основное для классич. статистич. физики (механики), изучающей ф-ции распределения системы из мн. частиц. Д. Н. Зубарев. ФАЗОВОЕ ПРОСТРАНСТВО в теории динамических систем—абстрактное пространство, ассоциированное с конкретной динамич. системой, точки в к-ром однозначно характеризуют все возможные состояния данной системы. Предполагается, что это пространство снабжено естеств. определением меры (расстояний, площадей и т. д.).  [c.267]

В работах Д. Бнркгофа метод секущей поверхности, состоящий в рассмотрении фазовых траекторий с помощью точечного отображения, порождаемого ими на секущей поверхности, превратился в основной инструмент теоретического изучения динамических систем [б].  [c.91]

Создание в последние десятилетия теории катастроф [275] и открытие Фейгенбаумом [188, 276] скейлингового закона эволюции нелинейных динамических систем, испытывающих бифуркации, стимулировали новую волну исследований математической гармонии природы. Один из фундаментальных результатов теории катастроф состоит в доказательстве универсальности небольшого числа пространственных образов фазовых траекторий динамических систем самой различной природы. Это вместе с законом Фейгенбаума позволило выявить еще целый ряд важных математических закономерностей процессов эволюции. Все это дало возможность по-новому взглянуть на давно известные закономерности, и в частности на филлотаксис.  [c.152]


Смотреть страницы где упоминается термин Динамическая траектория систем : [c.701]    [c.120]    [c.490]    [c.69]    [c.18]    [c.171]    [c.197]    [c.698]    [c.371]    [c.220]    [c.97]    [c.212]    [c.211]   
Курс теоретической механики Том 2 Часть 2 (1951) -- [ c.412 ]



ПОИСК



ГЛАВА v Динамические системы второго порядка Фазовые траектории и интегральные кривые на фазовой плоскости

Неравномерно гиперболическая траектория динамическая система

Основные типы траекторий. Грубость (структурная устойчивость) динамической системы

Особые траектории и ячейки динамической системы

Периодические и устойчивые по Пуассону траектории в фазовых пространствах динамических систем

Почти периодичность динамической системы и а траектории

Предельные траектории динамических систем, имеющих конечное

Решения и траектории динамической системы на сфере

Свойства траекторий, характерные для динамических систем на

Системы динамические

Случаи конечного числа особых траекторий Ячейки динамической системы в случае конечного числа особых

Траектория

Траектория е-траектория

Траектория системы

Фазовое пространство и фазовые траектории динамических систем



© 2025 Mash-xxl.info Реклама на сайте