Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы вращательные постоянные

Как и для линейных молекул, вращательные постоянные аД обычно  [c.490]

Дифференцирование уравнения (4-7) по температуре при постоянном объеме дает классическую вращательную составляющую мольной теплоемкости для жесткой линейной молекулы  [c.121]

Энергия молекулы в отсутствие внешнего поля равна сумме кинетической энергии, которая, как известно из механики, представляет собой однородную квадратичную функцию импульсов адр/р (коэффициенты а-,к в общем случае зависят от обобщенных координат qi), и потенциальной энергии взаимодействия атомов, (Мы будем в дальнейшем пользоваться известным условием Эйнштейна — по дважды повторяющимся индексам подразумевается суммирование.) Внутреннее движение атомов в молекуле после исключения поступательного и вращательного движений молекулы как целого представляет собой малые колебания около положения равновесия, в котором потенциальная энергия имеет минимум. Поэтому потенциальная энергия вблизи от равновесия представляет собой однородную квадратичную функцию обобщенных координат, характеризующих конфигурацию молекулы, т, е, всех координат за вычетом тех, которые описывают положение и ориентацию молекулы как целого. При этом 1/тш принимается за начало отсчета потенциальной энергии и точка равновесия — за начало отсчета координат ql. Для л-атомной молекулы число этих внутренних координат равно Зл — 5, если молекула линейна (положения равновесия атомов находятся на одной прямой), и Зл — 6, если молекула нелинейна. Действительно, в случае линейной молекулы ее положение полностью задается тремя координатами Хц, уц, 2ц центра инерции и двумя углами, В случае же нелинейной молекулы ее ориентация в пространстве задается тремя углами. Таким образом, для потенциальной энергии имеем выражение где — постоянные коэффи-  [c.211]


Соответственно типу молекулы уравнения термов вращательной энергии многоатомной молекулы должны содержать вращательные постоянные А, В, С, в которые входят моменты инерции /.4. 1в, с- Для простейшего случая линейной многоатомной молекулы уравнение вращательных термов имеет вид  [c.89]

На основании данных микроволнового спектра поглощения линейной молекулы OS v = 24 325,9 36488,8 48 651,6 60 814,1 МГц. Определите вращательную постоянную Во- Достаточно ли этих данных для того, чтобы определить межъядерное расстояние г(СО) и r( S)  [c.245]

Из вращательной структуры ИК-спектров двух изотопных модификаций молекул H N и H N, имеющих линейное строение, определены вращательные постоянные Во= 1,4782 см и  [c.245]

Рассмотрим покоящийся идеальный газ, находящийся в равновесном состоянии. Пусть каждая молекула газа состоит из п атомов. Такая молекула имеет всего Зп степеней свободы, из них 3 поступательных, 3 вращательных (для линейных молекул 2) и Зп — 6 колебательных (для линейных молекул Зп — 5). Точные методы классической статистики приводят к известному закону равнораспределения, согласно которому на каждую поступательную и вращательную степень свободы приходится величина внутренней энергии /гТ/2, а на каждую колебательную кТ. Внутренняя энергия газа на единицу массы получается как сумма вкладов всех степеней свободы молекул, умноженная на число молекул в единице массы газа, равное N/m, где N — число Авогадро, т — молекулярный вес. Так получаем модель совершенного газа с постоянными теплоемкостями.  [c.32]

Как мы видели ранее, если для перпендикулярного колебания (тип симметрии П) Б линейной молекуле возбужден один квант, то в качестве двух составляющих движения мы можем выбрать либо а) колебания в двух взаимно перпендикулярных плоскостях, либо б) круговые колебания по часовой стрелке и против часовой стрелки вокруг оси симметрии (см. фиг. 27, а) с моментами количества движения 1== . Если в первом случае молекула вращается, то при колебании в плоскости aJ, параллельной оси вращения, не будет происходить изменения момента инерции молекулы, пока колебания являются гармоническими, так как ядра движутся параллельно оси вращения. Однако для колебания, совершающегося в плоскости а -, перпендикулярной оси вращения, момент инерции относительно оси будет изменяться, так как он слагается из начального момента инерции и момента инерции относительно оси симметрии молекулы (который для смещенной конфигурации молекулы не равен нулю). Таким образом, для двух составляющих колебаний следует ожидать несколько отличающихся между собой эффективных значений постоянной В. Если применять схему б), то при колебании атомов вокруг оси симметрии мы получим по существу такую же картину, как и для молекулы со слегка изогнутой равновесной конфигурацией, т. е. мы получим слегка асимметричный волчок, для которого снято вырождение уровней с характерное для соответствующего симметричного волчка, причем расщепление этих уровней увеличивается с увеличением вращательного квантового числа J (см. фиг. 18). В данном случае К идентично I. Таким образом, согласно любой из схем, а) или б), мы должны ожидать удвоения на основании того, что при смещении атомов молекула становится слегка асимметричным волчком.  [c.406]


Совершенно аналогично случаю линейных молекул, согласно уравнениям (4,38—39), даже вращательные постоянные 5[о) и Ащ для наинизшего колебательного состояния несколько отличаются от значений В и А , соответствующих положению равновесия. Поэтому значения моментов инерции и расстояний между атомами, полученные из постоянных Spj и Л[о], не являются, точными значениями для положения равновесия, хотя и очень близки к ним.  [c.428]

Ранее было показано, что для линейных молекул сила Кориолиса приводит к взаимодействию двух колебаний различного типа симметрии, которое возрастает по мере увеличения вращения и обусловливает некоторое изменение вращательной постоянной а. Это изменение, вызванное взаимодействием, мало, если взаимодействующие колебания имеют существенно отличные частоты. Тот же эффект наблюдается и для симметричных волчков и частично обуславливает вращательные постоянные Однако благодаря тому, что теперь возможно вращение вокруг оси волчка, сила Кориолиса может вызвать, помимо этого, и взаимодействие между двумя составляющими вырожденной пары колебаний.  [c.429]

Невозмущенные уровни энергии. Как и следовало ожидать по аналогии с линейными молекулами или молекулами, являющимися симметричными и сферическими волчками, хорошим приближением к энергии колеблющейся и одновременно вращающейся молекулы является сумма чисто колебательной (см. гл. II) и вращательной энергии (см. гл. I), вычисленной при эффективных значениях вращательных постоянных (моментов инерции), т. е.  [c.489]

Вращательные комбинационные спектры асимметричных волчков 73 изменения распределения интенсивности с увеличением давления 562, 563 линейных молекул 32 симметричных волчков 47, 48, 49 Вращательные постоянные  [c.598]

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]

С — S, расстояние в Sa 426 С =S, связь, силовые постоянные 209 S, молекула 211 Ss, сероуглерод вращательная постоянная и момент инерции 424 линейная и симметричная структура  [c.611]

Отношение интенсивности стоксовых и антистоксовых комбинационных линий 271 Отношение произведений частот изотопических молекул, независимость от силовых постоянных 248, 251 Отражение в плоскости 12, 78 Отражение в центре 12, 27, 37, 111, 121 Отрицательные вращательные уровни асимметричных волчков 63, 495, 438 линейных молекул 27, 31, 400, 409, 427 симметричных волчков 38, 41—43, 434, 444  [c.618]

D, вращательная постоянная асимметричных волчков 63, 491 линейных молекул 26, 399, 402, 410, 420 сферических волчков 51, 475 Ds, см. V  [c.631]

В вырожденных электронных состояниях, поскольку, вообще говоря, Се не равно нулю, существует орбитальный магнитный момент в направлении оси симметрии поэтому можно предположить довольно большое спиновое расщепление, подобное расщеплению электронных состояний П, А,. . . в линейных молекулах. Детальное теоретическое рассмотрение этого случая до сих пор не проводилось. Возможно, что при большом мультиплетном расщеплении вращательные энергетические уровни различных компонент мультиплета можно описать с помощью эффективных вращательных постоянных, слегка отличающихся друг от друга.  [c.91]


Вращательные постоянные В ж В" можно определить из подполос параллельных полос точно таким же способом, как и для линейных молекул. Даже если подполосы не разрешены, как в случае СВд, определить В и В" все же можно, хотя получаемые значения будут гораздо менее точными, поскольку при этом сказывается различие неразрешенной. ЙГ-структуры при малых и больших значениях /. Если / Г-структура разрешена лишь частич-  [c.228]

Вращательные постоянные В tiD для верхнего и нижнего состояний перпендикулярной полосы могут быть получены из каждой подполосы точно таким же путем, как для линейных и двухатомных молекул. Однако из-за наличия члена с Djk может оказаться, что получаемые эффективные значения В несколько различаются для разных значений К. Используя выражение (1,102) с дополнительным членом (1,115), можно написать  [c.232]

Изложенные выше соображения основаны на предположении о жесткости симметричного волчка. При рассмотрении нежесткого симметричногв волчка необходимо добавить поправочные члены, подобные поправочному члену для линейных молекул (вращательная постоянная D). Согласно Славскому и Деннисону [795], уровни энергии нежесткого симметричного волчка даются выражением  [c.38]

По этим уравнениям из значений мгновенных координат ядер в пространстве можно определить углы 0 и и тем самым про-странствениую ориентацию оси z. Так как ориентация осей х и у несущественна с точки зрения минимизации колебательного углового момента [см. формулу (7.122)], отсутствует и соответствующее условие Эккарта, задающее угол Эйлера %. Обычно угол Эйлера х выбирается постоянным. Заметим, что в гл. 7 при выводе гамильтониана двухатомной молекулы мы выбирали X = 0°. В наиболее общем случае мы можем выбрать угол х как функцию углов 0 и Тогда элементы матрицы направляющих косинусов [см. (7.52)] будут зависеть всего от двух независимых переменных 0 и Из-за отсутствия угла % в качестве вращательной переменной компоненты углового момента в системе осей, фиксированных в линейной молекуле, не удовлетворяют коммутационным соотношениям (7.147). Коммутационные соотношения становятся более сложными [см., например, (7.84) и (7.85)], и матричные элементы компонент углового момента и вращательные собственные функции отличаются от соответствующих величин для нелинейной молекулы, приведенных в табл. 8.1. Из-за наличия лишних угловых множителей [например, множителя sin 0 во втором члене выражения (7.94)]  [c.365]

В ПК колебательно-вращательном спектре поглощения СОг среднее расстояние между линиями составляет около 1,6 см . Учитывая, что в спектре линии вращательной структуры через одну отсутствуют (это вызвано тем, что ядерный спин кислорода равен нулю, см. Пр иложение IV), определите вращательную постоянную и расстояние между атомами линейной молекулы СОг-  [c.246]

Метр в минус первой степени — (м т ] — единица кривизны поверхности, волнового числа, коэфф. фазы (фазовой постоянной), коэфф. ослабления (постоянной затухания), коэфф. (постоянной) распространения, линейного коэфф. (показателя) поглощения, показателей рассеяния и ослабления света, оптической силы линзы и сферического зеркала, постоянной Ридберга, линейного коэфф. ослабления, вращательной постоянной молекулы в СИ, МКГСС 1) ho ф-ле V.1.71 (разд. V.1) р= 1 м".  [c.295]

Каждая равновесная конфиг фацпя молекулы л[0-жет быть отнесена по своей симметрии к определенной точечной группе, т. е. к такой группе симметрии, все операции к-рой — повороты и отражения, переводящие равновесную конфигурацию саму в себя, — оставляют одну точку неподвижной в пространстве принадлежность к той или ипой группе соответствует наличию у молекулы тех или иных элементов симметрии — осей, плоскостей и центра спмметрии. При этом обычно, когда говорят о равновесной конфигурации молекулы, подразумевают ео равновесную конфигурацию в основном электронном состоянии. Точечные группы, к к-рым могут относиться равновесные конфигурации молекул, ириведены в табл. это — все 32 кристаллографич. точечные группы (см. Классы кристаллов), а также группы с осями симметрии порядка п= 5, 7, 8,... и и = оо и нкосаэдрич. группы. Отличный от нуля постоянный дипольный момент имеют только молекулы симметрии и эти же молекулы обладают чисто вращательными спектрами. Линейные молекулы относятся к группам и  [c.292]

Льюис и Гаустон [576] нашли подобный же вращательный комбинационный спектр для молекулы С На. Однако в этом случае имеет место не исчезновение, а лишь ослабление половины линий, а именно, четных линий, в соответствии с предсказанием теории для случая линейной и симметричной молекулы СаН, (см. стр. 29). Обратно, из наблюденного комбинационного спектра следует, что молекула СаН является симметричной и линейной (см. также гл. IV). Для вращательной постоянной В получается значение, равное 1,176 см . Отсюда находится момент инерции, равный /(СаНд) = 23,80 10" г см. Из этой одной цифры нельзя определить расстояний между ядрами (см., однако, гл. IV).  [c.34]

Взаимодействие колебания и вращения также обусловливает появление вращательной постоянной D (см. гл. I, раздел 1), отражающей влияние центробежного растяжения. Это влияние совершенно так же, как и в случае двухатомных молекул, будет несколько различным для различных колебательных уровней, т. е. вместо постоянной D в (1,1) мы должны ввести постоянную можно ожидать, что для постоянной будет справедлива формула, аналогичная (4,2). Так как, однако, постоянная D уже сама по себе всегда дает лишь очень малый поправочный член, то ее зависимостью от ко тебатель-ного квантового числа обычно можно прс небречь, по крайней мере, во всех практических случаях, известных до сих пор. Действительно, даже влияние постоянной D было установлено лишь для очень небольшого числа линейных многоатомных молекул.  [c.399]


Невырожденные колебательные состояния. Как мы видели, в нулевом приближении энергия симметричного волчка, колеблющегося и вращающегося, равна просто сумме колебательной и вращательной энергии (1,20) жесткого, симметричного волчка. В более высоком приближении мы должны учитывать, что во время колебания периодически меняются оба момента инерции в и /д. В первом приближении (точно так же, как и в случае линейных молекул) можно применять формулы для жесткого симметричного волчка, беря в качестве вращательных постоянных В н А средние значения и Л[ ] за время колебания, которые, вообще говоря, отличаются от равновесных значений Ве — к/8 к с1ве и Ag — h/S K lAe. Как и в случае линейных молекул, мы предполагаем, что справедливы следующие соотношения  [c.428]

Изложенные выше соображения применимы как к случаю молекулы, являющейся симметричным волчком в силу своей симметрии (как, например, молекулы КНз и молекулы галоидозамещенных метана), так и к случаю несимметричной молекулы, для которой два главных момента инерции случайно равны друг другу. Сильвер и Шефер [790] и Шефер [776] с помощью квантовой механики более строго доказали справедливость формул (4,38) и (4,39) для плоских и пирамидальных молекул ХУд. То же самое было выполнено Шефером [777] для случая молекул типа Х 2д с аксиальной симметрией и Нильсеном [666] — для общего случая. Эти авторы также дали точные формулы для и а , выраженные через потенциальные постоянные и геометрические параметры молекулы. Аналогично случаю линейных молекул, постоянные а,- слагаются из трех частей гармонической, ангармонической и части, обусловленной кориолисовым взаимодействием [см. уравнение (4,12)]. Сильвер, Шефер и Нильсен также наи ли, что в правые части выражений (4,38—39) необходимо добавить постоянные члены — и —а . Однако эти члены имеют тот же порядок величины, что и вращательные постоянные йу и поэтому практически ими можно всегда пренебречь ).  [c.429]

Аналогично линейным молекулам, составляющие р , Ру и р колебательного момента количества движения даются уравнениями вида (4,11), где h-—постоянные, зависящие от равновесных расстояний между атомами, от силовых постоянных и от масс. Однако в данном случае могут быть отличными от нуля, если даже i и k относятся к двум составляющим вырожденного колебания. Постоянные С,-, введенные нами выше, как раз и относятся к вырожденному колебанию и дают изменение энергии первого порядка, тогда как все остальные jf дают изменение энергии только второго порядка величины, т. е. приводят к добавлению некототой величины к вращательным постоянным а,. Сильвер и Шефер [790] и Шефер [776, 777] дали явную (но довольно сложную) формулу для , в зависимости от масс, силовых постоянных и междуатомных расстояний для случая плоских и пирамидальных молекул типа ХУ и аксиальных молекул типа XYZs (см. также Ян [468]).  [c.433]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]

Вращательные постоянные А можно получить только из перпендикулярных полос, таким путем в принципе можно было бы определить и значение В, если бы ветви Р ж Н подполос были разрешены однако до сих пор такие случаи еще не наблюдались. Если молекула случайно (или приближенно) является симметричным волчком, то разность (Л — В ) можно найти из линейного <1лена в формуле (4,59), дающей головы ветвей Q подполос (т. е. v ), а величину (Л — В ) — А" — В")—-из квадратичного члена. Тогда, если В и В известны,  [c.463]

На основании этих анализов спектра были определены со значительной точностью положения вращательных уровней (см. работы, цитированные выше, для возбужденного состояния и работу Рендалла, Деннисона, Гинзбурга и Вебера [712] для основного состояния). Однако из наблюденных значений уровней энергии до сих пор не удалось с соответствующей точностью вычислить значения вращательных постоянных (сравнимой с точностью, полученной для линейных молекул).  [c.518]

Рассмотрим сперва вращательные части Н и Ср для молекул, в которых нет свободного или заторможенного внутреннего вращенпя. Вращательная часть статистической суммы жесткой молекулы Q . при высоких температурах определяется формулами (5,22) или (5.29). Так как входит и в Я и в С, п форме d ЫQ ) dT, то все постоянные (т. е. независящие от температуры) множители выпадают, и мы получаем для линейных молекул из (5,22)  [c.544]

Xs, молекулы, плоские, образующие правильный шестиугольник (De/,) 103, 110, 132, 203 Х молекулы точечной группы Dia, предположение о более общей квадратичной потенциальной функции 20Э Х , молекулы точечной группы Of 21 ХоСО, плоские колебания как функция массы X 218, 219 XYa, молекулы, линейные, симметричные влияние ангармоничности на колебательные уровни 230 вращательная постоянная D 26 выражения для основных частот и силовых постоянных 172 в более общей системе сил 204 в системе постоянных валентных сил 190 изотопический эффект 249 колебательный момент количества движения 88, 403 координаты симметрии 172 кориолисово взаимодействие 402, 403 междуатомные расстояния 424, 426  [c.614]

XoYjY , изотоп молекулы 253 XVZ, молекулы, линейные (см. также Линейные молекулы) влияние ангармоничности на колебательные уровни 230 вращательные постоянные Z) и a 26,405 выражение для частот нормальных колебаний и силовые постоянные 191, 209 изотопический эффект 250  [c.615]

Статистические суммы 531 внутренние 532 в приближении гармонического осциллятора и жесткого ротатора 539, 540 вращательные 533, 535 колебательные 533, 534 молеку.т с внутренним вращением 540 постоянные равновесич химических реакций, выраженные через статистические суммы 556 поступательные 532 Статистический вес влияние инверсионного удвоения 442, 495 внутренний и полный 532 вращательных уровней асимметричных волчков 67 линейных молекул 28, 400 симметричных волчков 38, 439 сферических волчков 51, 474, 477 полный, включая ядерный спин для несимметричных молекул 28, 39, 539 Степень вырождения 93, 94, 118 Степень деполяризации комбинационного рассеяния 264, 291 релеевского рассеяния 266, 291 способы, позволяющие отличать полносимметричные и неполносимметричные комбинационные линии 269, 292, 521, 522  [c.623]


Определение вращательных постоянных в верхнем и нижнем состояниях при линейно-изогнутых переходах производится почти точно так же, как и при изогнуто-линейных переходах. Так, эффективное значение В для нижнего состояния равно по существу /з (5 + С), а из удвоения К-тжаа. (при К" = 1) легко получить значение 2 В — С) с соответствующими поправками для молекулы типа сильно асимметричного волчка (гл. I, разд. 3,г). Поскольку у всех колебательных уровней нижнего состояния имеются подуровни со всеми значениями К", определять значения вращательных постоянных А1 несколько легче, чем в случае изогнуто-линейных переходов, наблюдаемых при поглощении. Для этого необходимо составить разность волновых чисел начал подполос Vo [К — К"). Например, если пренебречь центробежным растяжением и членами более высокой степени, которые учитывают влияние асимметрии (фиг. 90, б), то  [c.212]

Наблюдались две системы полос испускания подобного типа упоминавшиеся ранее полосы NH2 в спектрах испускания различных пламен, в спектрах разрядов, а также в спектрах комет. Единственное отличие от спектра поглощения заключается в том, что в спектре испускания появляются полосы, у которых в нижнем состоянии возбуждено по одному или по нескольку квантов одного или большего числа колебаний. Второй является система полос в спектре пламени окиси углерода, которые оставались не отнесенными в течение нескольких десятилетий. Однако недавно Диксон [283] показал, что эти полосы обусловлены изогнуто-линейным переходом в молекуле СОз- Все наблюдавшиеся полосы связаны с переходами с двух самых низких колебательных уровней возбужденного состояния (типа В2), в котором молекула сильно изогнута (0 122°). В нижнем же (в основном) -состоянии, в котором молекула линейна, в переходах участвуют высокие возбужденные колебательные уровни. Наблюдается характерное чередование четных и нечетных подполос в последовательных полосах прогрессии по 2, однако колебательная структура усложнена наличием резонанса Ферми. Переход относится к параллельному типу (фиг. 90, а), т. е. К = I" и были идентифицированы полосы со значениями от О до 4. Определение величины А — В ъ возбужденном состоянии не может быть произведено непосредственно из спектра (поскольку АК = 0), как и в случае спектра поглощения СЗг- Для этого необходимо знать разности энергий между уровнями с различными значениями I в нижнем состоянии. В случае молекулы СО2 такие разности энергий могут быть получены экстраполяцией данных из инфракрасных спектров (Куртуа [246]). Полученные вращательные постоянные верхнего состояния приведены в табл. 64 приложения VI.  [c.218]

Было подробно изучено несколько случаев перпендику,тярных полос молекул типа слегка асимметричного волчка. В частности, хорошим примером может служить перпендикулярная полоса радикала HN N, фотография которой приводится на фиг. 108. В данном случае вращательные постоянные верхнего п нижнего состояний почти одинаковы. По этой причине, а также из-за очень малой асимметрии молекулы полоса очень похожа по своей структуре на схематический спектр симметричного волчка, приведенный на фиг. 99 наблюдается ряд почти эквидистантных ( -ветвей, похожих по внешнему виду на отдельные линии. Между ними имеется тонкая структура, обусловленная Р- и 2 -ветвями. Эти полосы поглощения являются типичными перпендикулярными полосами, в точности подобными перпендикулярным инфракрасным полосам. Очень большое расстояние между -ветвями АО см ) и уменьшение этого расстояния в два раза в случае дейтерировапного соединения говорит о том, что небольшая величина момента инерции /4 обусловлена почти исключительно атомом Н. В соответствии с этим следует предположить, что атом Н находится вне оси линейной группы N N. Применение приборов с более высоким разрешением позволило довольно полно разрешить некоторые подполосы и определить описанным выше способом все три вращательные  [c.258]


Смотреть страницы где упоминается термин Линейные молекулы вращательные постоянные : [c.198]    [c.119]    [c.264]    [c.603]    [c.615]    [c.618]    [c.629]    [c.640]    [c.85]    [c.91]    [c.505]    [c.761]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.7 , c.26 , c.32 , c.398 , c.400 , c.407 , c.417 , c.421 , c.423 ]



ПОИСК



X2Yj, молекулы, линейные, симметричные вращательная постоянная

XYa, молекулы, линейные, симметричные вращательная постоянная

XYa, молекулы, линейные, симметричные формула для вращательных постоянных

Вращательные линейных молекул

Вращательные постоянные

Линейные молекулы



© 2025 Mash-xxl.info Реклама на сайте