Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

XYa, молекулы, линейные, симметричные вращательная постоянная

Ранее было показано, что для линейных молекул сила Кориолиса приводит к взаимодействию двух колебаний различного типа симметрии, которое возрастает по мере увеличения вращения и обусловливает некоторое изменение вращательной постоянной а. Это изменение, вызванное взаимодействием, мало, если взаимодействующие колебания имеют существенно отличные частоты. Тот же эффект наблюдается и для симметричных волчков и частично обуславливает вращательные постоянные Однако благодаря тому, что теперь возможно вращение вокруг оси волчка, сила Кориолиса может вызвать, помимо этого, и взаимодействие между двумя составляющими вырожденной пары колебаний.  [c.429]


Невозмущенные уровни энергии. Как и следовало ожидать по аналогии с линейными молекулами или молекулами, являющимися симметричными и сферическими волчками, хорошим приближением к энергии колеблющейся и одновременно вращающейся молекулы является сумма чисто колебательной (см. гл. II) и вращательной энергии (см. гл. I), вычисленной при эффективных значениях вращательных постоянных (моментов инерции), т. е.  [c.489]

Вращательные комбинационные спектры асимметричных волчков 73 изменения распределения интенсивности с увеличением давления 562, 563 линейных молекул 32 симметричных волчков 47, 48, 49 Вращательные постоянные  [c.598]

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]

С — S, расстояние в Sa 426 С =S, связь, силовые постоянные 209 S, молекула 211 Ss, сероуглерод вращательная постоянная и момент инерции 424 линейная и симметричная структура  [c.611]

Отношение интенсивности стоксовых и антистоксовых комбинационных линий 271 Отношение произведений частот изотопических молекул, независимость от силовых постоянных 248, 251 Отражение в плоскости 12, 78 Отражение в центре 12, 27, 37, 111, 121 Отрицательные вращательные уровни асимметричных волчков 63, 495, 438 линейных молекул 27, 31, 400, 409, 427 симметричных волчков 38, 41—43, 434, 444  [c.618]

Как мы видели ранее, если для перпендикулярного колебания (тип симметрии П) Б линейной молекуле возбужден один квант, то в качестве двух составляющих движения мы можем выбрать либо а) колебания в двух взаимно перпендикулярных плоскостях, либо б) круговые колебания по часовой стрелке и против часовой стрелки вокруг оси симметрии (см. фиг. 27, а) с моментами количества движения 1== . Если в первом случае молекула вращается, то при колебании в плоскости aJ, параллельной оси вращения, не будет происходить изменения момента инерции молекулы, пока колебания являются гармоническими, так как ядра движутся параллельно оси вращения. Однако для колебания, совершающегося в плоскости а -, перпендикулярной оси вращения, момент инерции относительно оси будет изменяться, так как он слагается из начального момента инерции и момента инерции относительно оси симметрии молекулы (который для смещенной конфигурации молекулы не равен нулю). Таким образом, для двух составляющих колебаний следует ожидать несколько отличающихся между собой эффективных значений постоянной В. Если применять схему б), то при колебании атомов вокруг оси симметрии мы получим по существу такую же картину, как и для молекулы со слегка изогнутой равновесной конфигурацией, т. е. мы получим слегка асимметричный волчок, для которого снято вырождение уровней с характерное для соответствующего симметричного волчка, причем расщепление этих уровней увеличивается с увеличением вращательного квантового числа J (см. фиг. 18). В данном случае К идентично I. Таким образом, согласно любой из схем, а) или б), мы должны ожидать удвоения на основании того, что при смещении атомов молекула становится слегка асимметричным волчком.  [c.406]


Xs, молекулы, плоские, образующие правильный шестиугольник (De/,) 103, 110, 132, 203 Х молекулы точечной группы Dia, предположение о более общей квадратичной потенциальной функции 20Э Х , молекулы точечной группы Of 21 ХоСО, плоские колебания как функция массы X 218, 219 XYa, молекулы, линейные, симметричные влияние ангармоничности на колебательные уровни 230 вращательная постоянная D 26 выражения для основных частот и силовых постоянных 172 в более общей системе сил 204 в системе постоянных валентных сил 190 изотопический эффект 249 колебательный момент количества движения 88, 403 координаты симметрии 172 кориолисово взаимодействие 402, 403 междуатомные расстояния 424, 426  [c.614]

Льюис и Гаустон [576] нашли подобный же вращательный комбинационный спектр для молекулы С На. Однако в этом случае имеет место не исчезновение, а лишь ослабление половины линий, а именно, четных линий, в соответствии с предсказанием теории для случая линейной и симметричной молекулы СаН, (см. стр. 29). Обратно, из наблюденного комбинационного спектра следует, что молекула СаН является симметричной и линейной (см. также гл. IV). Для вращательной постоянной В получается значение, равное 1,176 см . Отсюда находится момент инерции, равный /(СаНд) = 23,80 10" г см. Из этой одной цифры нельзя определить расстояний между ядрами (см., однако, гл. IV).  [c.34]

Изложенные выше соображения основаны на предположении о жесткости симметричного волчка. При рассмотрении нежесткого симметричногв волчка необходимо добавить поправочные члены, подобные поправочному члену для линейных молекул (вращательная постоянная D). Согласно Славскому и Деннисону [795], уровни энергии нежесткого симметричного волчка даются выражением  [c.38]

Выражение (2 7 [ 1) если не учитывать постоянный множитель, определяемый ядерным спином (см. стр. 39), представляет полный статистичзский вес только в случае молекулы, случайно являющейся сферическим волчком, или молекулы, у которой спины одинаковых ядер очень велики. Сложнее обстоит дело для молекулы, являющейся сферическим волчком в силу своей симметрии и имеющей малые спины одинаковых ядер добавочный множитель, на который следует умножить (2 7- -1)-кратноэ пространственное вырождение для получения полного статистического веса, не будет равен просто (2 74-1), умноженному на множитель, зависящий от спина ядра. Как будет более подробно показано в гл. IV, в случае тетраэдрических молекул (точечная группа Т ,), таких как СН4, СО , СС1,, Р , получаются три типа симметрии вращательных уровней, называемых А, Е я Г, которые аналогичны симметричным (я) и антисимметричным а) уровням линейных симметричных молекул и уровням А и Е молекул с осью симметрии третьего порядка. Оказывается, что за исключением самых низких вращательных уровней все три типа уровней возникают при данном значении 7 ). Число подуровней каждого типа меняется по  [c.52]

Невырожденные колебательные состояния. Как мы видели, в нулевом приближении энергия симметричного волчка, колеблющегося и вращающегося, равна просто сумме колебательной и вращательной энергии (1,20) жесткого, симметричного волчка. В более высоком приближении мы должны учитывать, что во время колебания периодически меняются оба момента инерции в и /д. В первом приближении (точно так же, как и в случае линейных молекул) можно применять формулы для жесткого симметричного волчка, беря в качестве вращательных постоянных В н А средние значения и Л[ ] за время колебания, которые, вообще говоря, отличаются от равновесных значений Ве — к/8 к с1ве и Ag — h/S K lAe. Как и в случае линейных молекул, мы предполагаем, что справедливы следующие соотношения  [c.428]

Изложенные выше соображения применимы как к случаю молекулы, являющейся симметричным волчком в силу своей симметрии (как, например, молекулы КНз и молекулы галоидозамещенных метана), так и к случаю несимметричной молекулы, для которой два главных момента инерции случайно равны друг другу. Сильвер и Шефер [790] и Шефер [776] с помощью квантовой механики более строго доказали справедливость формул (4,38) и (4,39) для плоских и пирамидальных молекул ХУд. То же самое было выполнено Шефером [777] для случая молекул типа Х 2д с аксиальной симметрией и Нильсеном [666] — для общего случая. Эти авторы также дали точные формулы для и а , выраженные через потенциальные постоянные и геометрические параметры молекулы. Аналогично случаю линейных молекул, постоянные а,- слагаются из трех частей гармонической, ангармонической и части, обусловленной кориолисовым взаимодействием [см. уравнение (4,12)]. Сильвер, Шефер и Нильсен также наи ли, что в правые части выражений (4,38—39) необходимо добавить постоянные члены — и —а . Однако эти члены имеют тот же порядок величины, что и вращательные постоянные йу и поэтому практически ими можно всегда пренебречь ).  [c.429]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]


Вращательные постоянные А можно получить только из перпендикулярных полос, таким путем в принципе можно было бы определить и значение В, если бы ветви Р ж Н подполос были разрешены однако до сих пор такие случаи еще не наблюдались. Если молекула случайно (или приближенно) является симметричным волчком, то разность (Л — В ) можно найти из линейного <1лена в формуле (4,59), дающей головы ветвей Q подполос (т. е. v ), а величину (Л — В ) — А" — В")—-из квадратичного члена. Тогда, если В и В известны,  [c.463]

Было подробно изучено несколько случаев перпендику,тярных полос молекул типа слегка асимметричного волчка. В частности, хорошим примером может служить перпендикулярная полоса радикала HN N, фотография которой приводится на фиг. 108. В данном случае вращательные постоянные верхнего п нижнего состояний почти одинаковы. По этой причине, а также из-за очень малой асимметрии молекулы полоса очень похожа по своей структуре на схематический спектр симметричного волчка, приведенный на фиг. 99 наблюдается ряд почти эквидистантных ( -ветвей, похожих по внешнему виду на отдельные линии. Между ними имеется тонкая структура, обусловленная Р- и 2 -ветвями. Эти полосы поглощения являются типичными перпендикулярными полосами, в точности подобными перпендикулярным инфракрасным полосам. Очень большое расстояние между -ветвями АО см ) и уменьшение этого расстояния в два раза в случае дейтерировапного соединения говорит о том, что небольшая величина момента инерции /4 обусловлена почти исключительно атомом Н. В соответствии с этим следует предположить, что атом Н находится вне оси линейной группы N N. Применение приборов с более высоким разрешением позволило довольно полно разрешить некоторые подполосы и определить описанным выше способом все три вращательные  [c.258]

Статистические суммы 531 внутренние 532 в приближении гармонического осциллятора и жесткого ротатора 539, 540 вращательные 533, 535 колебательные 533, 534 молеку.т с внутренним вращением 540 постоянные равновесич химических реакций, выраженные через статистические суммы 556 поступательные 532 Статистический вес влияние инверсионного удвоения 442, 495 внутренний и полный 532 вращательных уровней асимметричных волчков 67 линейных молекул 28, 400 симметричных волчков 38, 439 сферических волчков 51, 474, 477 полный, включая ядерный спин для несимметричных молекул 28, 39, 539 Степень вырождения 93, 94, 118 Степень деполяризации комбинационного рассеяния 264, 291 релеевского рассеяния 266, 291 способы, позволяющие отличать полносимметричные и неполносимметричные комбинационные линии 269, 292, 521, 522  [c.623]


Смотреть страницы где упоминается термин XYa, молекулы, линейные, симметричные вращательная постоянная : [c.615]    [c.310]    [c.603]    [c.505]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.26 ]



ПОИСК



274, 323—327 симметричный

X2Yj, молекулы, линейные, симметричные вращательная постоянная

XYa, молекулы, линейные, симметричные

XYa, молекулы, линейные, симметричные формула для вращательных постоянных

Вращательные линейных молекул

Вращательные постоянные

Линейные молекулы

Линейные молекулы вращательные постоянные



© 2025 Mash-xxl.info Реклама на сайте