Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Невырожденные колебательные состояния

Интегральная интенсивность полосы поглощения, отвечающей переходу между невырожденными колебательными состояниями т и п, равна  [c.210]

Согласно сказанному выше, вращательная энергия линейной молекулы, находящейся в невырожденном колебательном состоянии, выражается функцией  [c.399]

Если инверсионным удвоением нельзя пренебречь, тогда требуется специальное рассмотрение свойств симметрии. Мы опять разберем только случай молекулы типа XYg, принадлежащей к точечной группе Св. (подобной, например, молекуле NHg). Ранее (стр. 240) было показано, что колебательная собственная функция более низкой составляющей инверсионного дублета остается неизменной, тогда как собственная функция более высокой составляющей меняет при инверсии знак. Комбинируя это свойство с положительной и отрицательной (-)-, —) симметрией вращательных уровней сплющенного симметричного волчка (фиг. 8,6), мы получаем четность вращательных уровней для полносимметричного вырожденного колебательного уровня, как показано слева для каждого уровня на фиг. 120. Теперь необходимо учесть, что каждая колебательная собственная функция является суммой или разностью собственных функций левой и правой форм, и поэтому колебательные уровни можно классифицировать в соответствии с типами симметрии точечной группы D3 (потенциальное поле имеет симметрию точечной группы Ддд). Легко заметить, что положительные колебательные подуровни невырожденного колебательного состояния принадлежат к колебательному типу симметрии Ац отрицательные — к типу симметрии А . Комбинируя эти типы симметрии с типами симметрии вращательных уровней для полносимметричного колебательного уровня (фиг. 118,а), мы получим полную симметрию (без учета ядерного спина), указанную на фиг. 120,а справа от каждого уровня. Таким же образом получается полная симметрия для вырожденного колебательного уровня на фиг. 120,6. При равенстве нулю спина одинаковых ядер будут иметься только вращательные уровни Aj. В случае полносимметричного колебательного уровня отсюда следует, как и ранее, что встречаются только уровни с О, 3, 6,. ..  [c.441]


Невырожденные колебательные состояния. В нулевом приближении энергия вращающейся и колеблющейся молекулы, являющейся сферическим волчком, равна, очевидно, простой сумме колебательной и вращательной энергий, рассмотренных выше. Как и прежде, в первом приближении взаимодействие между колебанием и вращением может быть учтено, если в выражение для вращательной энергии 57(7- -1) [см. уравнение (1,51)] ввести эффективное значение В[т1] постоянной В, усредненное по колебанию. По аналогии с прежними  [c.474]

Для невырожденных колебательных уровней это выражение дает очень хорошее приближение однако для вырожденных колебаний необходимо ввести дополнительные члены, характеризуюш ие взаимодействие, связанное с силами Кориолиса (см. ниже). Сравнивая (4,77) с (4,6), мы видим, что вращательные уровни невырожденных колебательных состояний сферического волчка очень схожи с соответствующими вращательными уровнями линейных молекул. Различие состоит в том, что в данном случае статистический вес равен не (27+ 1), а (27+ 1) .  [c.475]

В тетраэдрических молекулах имеется три типа вырожденных колебательных уровней — Е, р1 и Основные частоты молекул и ХУ принадлежат только к двум из них, а именно к Е н Р (см. стр. 159). Рассматривая колебания, изображенные на фиг. 41, нетрудно заметить, что при возбуждении одной составляющей дважды вырожденного колебания 7.2 силы Кориолиса не могут возбудить вторую составляющую. Следовательно, для дважды вырожденных колебательных состояний расщепление Кориолиса отсутствует, а, их вращательные уровни энергии совпадают с вращательными уровнями невырожденных колебательных состояний [см. (4,77)].  [c.475]

Если молекула не имеет вырожденных колебаний, преобразование можно выбрать таким образом, что все колебательные операторы в Я образуют диагональные в базисе нулевого приближения комбинации, которые коммутируют между собой и не влияют на дальнейшее решение. Процесс нахождения Еуп состоит из двух этапов первый — соответствует преобразованию к эффективному вращательному гамильтониану Я (и), записанному в каждом невырожденном колебательном состоянии, а второй — соответствует диагонализации чисто вращательного гамильтониана №.  [c.33]

На рис. 6.14 приведены схемы энергетических уровней основных электронных состояний молекул СО2 и N2. Поскольку N2 — двухатомная молекула, она имеет лишь одну колебательную моду на рисунке показаны два нижних уровня (и = 0, v= )-Структура энергетических уровней молекулы СО2 более сложная, поскольку эта молекула является трехатомной. Здесь мы имеем три невырожденные колебательные моды (рис. 6.15), а именно 1) симметричную валентную моду, 2) деформационную моду и 3) асимметричную валентную моду. Поэтому колебания молекулы описываются тремя квантовыми числами П], П2 и пз, которые определяют число квантов в каждой колебательной моде. Таким образом, соответствующий уровень обозначается этими тремя квантовыми числами, записываемыми  [c.361]


Если, наконец, несколько нормальных колебаний возбуждаются многократно, то сначала нужно найти результирующий тип симметрии каждого многократно возбужденного колебания, согласно табл. 32 (или для невырожденных колебаний, согласно правилам, данным на стр. 140), затем составить комбинации полученных типов симметрии с помощью табл. 31 и 33. В качестве примера рассмотрим возбужденное колебательное состояние молекулы бензола (см. фиг. 50), принадлежащей к точечной группе в которой воз-  [c.148]

Обертоны. В случае полос, соответствующих обертонам, нижнее состояние является основным колебательным состоянием (колебательная собственная функция полносимметрична), и поэтому, согласно общему правилу (стр. 273), обертон будет активным в инфракрасном спектре, если, по крайней мере, одна составляющая дипольного момента относится к тому же типу симметрии, что и колебательная собственная функция верхнего состояния и он будет активным в комбинационном спектре, если, по крайней мере, одна составляющая поляризуемости относится к тому же типу симметрии,, что и функция Типы симметрии собственной функции верхнего состояния для невырожденных колебаний можно найти по правилу, данному на стр. 115, а в случае вырожденных колебаний — из табл. 32 типы симметрии дипольного момента и поляризуемости приведены в табл. 55.  [c.284]

Для вырожденного колебательного состояния следует различать уровни -[-/и —/ в зависимости от того, имеют ли колебательный и вращательный моменты количества движения одинаковый или противоположный знак (см. фиг. 117). Теллер [836] показал, что при переходе из верхнего вырожденного колебательного состояния в нижнее невырожденное состояние только уровни -f-/ комбинируют с вращательными уровнями невырожденного состояния при aK = -j- 1 гг только уровни — I комбинируют с этими вращательными уровнями при Д/Г = —1. Обратная картина имеет место, когда вырожденное состояние является нижним (и если мы определим обычным образом Д/С как К — К")- Из фиг. 118 легко видеть, что это правило находится в соответствии с правилом, согласно которому между собой могут комбинировать только вращательные уровни одного и того же типа симметрии. Для перехода между двумя вырожденными состояниями мы, вообще говоря (см. стр. 291), имеем параллельную и перпендикулярную составляющие (Д/С=0 и АК = 1 соответственно). Для первой нз их справедливо условие ——1<—> — I, для второй имеем —/- —при ДАТ = -1-1 и  [c.445]

Переходы между невырожденными колебательными уровнями параллельные полосы. Для молекул, имеющих оси симметрии порядка более высокого, чем второй, дипольный момент при всех разрешенных переходах между невырожденными состояниями (см. табл. 55) меняется только в направлении оси симметрии (совпадающей с осью волчка), и поэтому происходят только переходы с АК = О, т. е. появляются только параллельные полосы. Для менее симметричных молекул изменение дипольного момента при колебательном переходе может быть также перпендикулярно к оси волчка, и в этом случае возможны переходы с АК = 1 (т. е. перпендикулярные полосы). В действительности, при достаточно низкой симметрии может оказаться, что дипольный момент меняется в направлении, образующем некоторый угол с осью волчка. В этом случае могут происходить оба перехода с АК = О и АК — 1, и мы получаем так называемую смешанную полосу.  [c.446]

Главный результат заключается в том, что (как и следовало предполагать) каждый колебательный уровень с данным V расщепляется на столько различных электронно-колебательных уровней, сколько типов получается при перемножении электронных и колебательных типов, нанример, в случае />зй и — на столько уровней, сколько показано на фиг. 10, а и 10, б. Это расщепление можно назвать расщеплением по Яну — Теллеру. Здесь следует напомнить, что даже в невырожденном электронном состоянии более  [c.58]

Фиг. 31. Вращательные энергетические уровни вытянутого (а) и сплюснутого (б) симметричного волчка в невырожденном электронно-колебательном состоянии. Уровни расположены по столбцам в соответствии со значениями К. Фиг. 31. Вращательные энергетические уровни вытянутого (а) и сплюснутого (б) <a href="/info/40149">симметричного волчка</a> в <a href="/info/365031">невырожденном электронно</a>-<a href="/info/14660">колебательном состоянии</a>. Уровни расположены по столбцам в соответствии со значениями К.

При рассмотрении статистических весов вращательных уровней надо знать только поведение волновых функций но отношению к вращательной подгруппе (подробное описание см. в работе [23], стр. 438 и след.). В аксиальной молекуле с осью симметрии р-го порядка должен быть по крайней мере один набор из р одинаковых ядер. Если в нашем примере молекулы одинаковые ядра имеют нулевой спин (и, следовательно, подчиняются статистике Бозе), то в действительности встречаются только уровни типа А у вращательной подгруппы, т. е. А и А [ полной группы симметрии это означает, что в электронно-колебательном состоянии Е (фиг. 36, б) следует ожидать не уровни с А = О, 3, 6,. . ., а только поочередно верхние (+1) и нижние (—1) компоненты уровней с А 1, 2, 4, 5,. ... В невырожденном электронно-колебательном состоянии А[, или А , или А 1, или А" могут присутствовать только уровни с К = О, 3, б,. .. (фиг. 36, а).  [c.95]

Надо подчеркнуть, что при этом расщепляется только компонента (+ ) (фиг. 36, б) компонента (—I) имеет тип Е и поэтому не может расщепляться ни в каком приближении. Следует также заметить, что если в молекуле XYg атом Y имеет ядерный спин 1/2 (т. е. если Y = Н), то поочередно отсутствуют то верхний, то нижний уровни Z-дублетов, так как появляются только уровни Л2 (фиг. 36). В принципе расщепляются также уровни —I) при К = 2, (+Z) нри А = 4 и т. д., но, как и в случае -удвоения состояний А, Ф,. .. линейных молекул, это удвоение появляется только в гораздо более высоком приближении и пропорционально соответствующим более высоким степеням J (J 1). Это относится и к дублетам А , А невырожденного колебательного уровня при К = 3 (фиг. 36, а).  [c.97]

Иными словами, возможны все те переходы, для которых произведение содержит ТИПЫ симметрии дипольного момента, характеризующего переход. Для невырожденных электронных состояний это более общее правило отбора приводит к тем же переходам, что и правило (11,30), а для вырожденных электронных состояний это уже не так, если возбуждены вырожденные колебания. В этом случае для данного может существовать несколько электронно-колебательных состояний причем некоторые из них могут иметь нужную симметрию произведения даже если  [c.158]

Переходы между вырожденным и невырожденным состояниями (перпендикулярные полосы). При переходах между вырожденным и невырожденным электронными состояниями момент перехода перпендикулярен оси симметрии. Все разрешенные колебательные переходы обусловливают появление полос перпендикулярного типа, для которых соблюдается правило отбора (П,66) для квантовых чисел и / и правила отбора (11,73) и (11,74) для уровней (+1) и (—г) (см. также табл. 14).  [c.229]

Невырожденные колебательные состояния. Как мы видели, в нулевом приближении энергия симметричного волчка, колеблющегося и вращающегося, равна просто сумме колебательной и вращательной энергии (1,20) жесткого, симметричного волчка. В более высоком приближении мы должны учитывать, что во время колебания периодически меняются оба момента инерции в и /д. В первом приближении (точно так же, как и в случае линейных молекул) можно применять формулы для жесткого симметричного волчка, беря в качестве вращательных постоянных В н А средние значения и Л[ ] за время колебания, которые, вообще говоря, отличаются от равновесных значений Ве — к/8 к с1ве и Ag — h/S K lAe. Как и в случае линейных молекул, мы предполагаем, что справедливы следующие соотношения  [c.428]

Разберем теперь влияние ядерного спина и статистики. Сначала мы рассмотрим случай, когда в неплоской молекуле типа XY3, принадлежащей к точечной группе Сз , ядра У имеют спин, равный нулю (аналогичное рассмотрение будет применимо к любым молекулам с симметрией если все одинаковые ядра имеют спин, равный нулю). Поворот молекулы на 120° вокруг оси волчка эквивалентен двум последовательным перестановкам двух пар одинаковых ядер. Поэтому полная собственная функция должна оставаться неизменной, независимо от того, применяется ли к одинаковым ядрам статистика Бозе или статистика Ферми, следовательно, все уровни энергии, показанные на фиг. 118, собственные функции которых не остаются неизменными при таком повороте, должны отсутствовать. При равенстве нулю ядерного спина одинаковых атомов появляются только уровни, имеющие полную симметрию Л иначе говоря, для невырожденных колебательных состояний имеются только уровни с /(=3q, для вырожденных колебательных состояний — только половина уровней с К=Ъд 1. Для плоской молекулы типа ХУд, кроме того, поворот вокруг одной из осей симметрии второго порядка эквивалентен перестановке двух одинаковых ядер. Поэтому, применяя статистику Бозе к двум одинаковым ядрам со спинами, равными нулю, мы получаем только уровни типа симметрии А , изображенные на фиг. 118, так как только для них при подобном повороте, т. е. при перестановке ядер, собственные функции остаются неизменными. Если справедлива статистика Ферми, то появляются только уровни Л, (см. фиг. 118), так как по отношению к перестановке одинаковых ядер собственная функция должна быть антисимметричной. Однако в действительности нет ядер с нулевым спином, подчиняющихся статистике Ферми, так что осуществляется только первый случай. Так, например, в случае молекул, подобных SO3, СОз , — если они принадлежат к точечной группе что очень вероятно, — для невырожденных колебательных состояний имеются только вращательные уровни с /С = О, 3, 6, 9... (при К —О — только уровни с четными У), тогда как для вырожденных колебательных состояний имеются только вращательные уровни с А = 1, 2, 4, 5, 7, 8..., для которых, в свою очередь, при каждом значении J наблюдается только один подзфовень (см. фиг. 118).  [c.438]


Колебательная ст ктура вырожденных электронных состояний М. Колеб ат. структура синглетных электронных состояний М. описывается ф-лами (13) — (15), в к-рых, однако, следует учесть зависимость частот колебаний и постоянных ангармоничности от электронного состояния. Они также описывают уровни невырожденных колебаний в вырожденных электронных состояниях или же уровни вырожденных колебаний в невырожденных электронных состояниях. Качественно новые эффекты возникают в вырожденных электронных состояниях при возбуждении вырожденных колебаний, в основном за счёт взаимодействия колебат. угловых моментов вырожденных колебаний с электронным орбитальным угл. моментом.  [c.189]

Колебательные состояния двухатомных молекул невырождены, т. е. =1. Электронные состояния могут быть как вырожденными, так и невырожденными.  [c.34]

Вырожденные колебательные состояния. В настоящем разделе мы рассмотрим только наличие вырождения, обусловленного симметрией, и не будем касаться случайного вырождения. Вырожденные колебательные состояния получаются для всех молекул, являющихся симметричными волчками в силу их симметрии (см. гл. II, раздел 3). Как впервые показали Теллер и Тисса [837, 836], для таких вырожденных состояний влияние силы Кориолиса, вообще говоря, значительно больше, чем в случае невырожденных состояний или вырожденных состояний линейных молекул.  [c.429]

Переходы между невырожденным и вырожденным колебательными уровнями перпендикулярные полосы. Для молекулы, являющейся симметричным волчком в силу своей симметрии, перпендикулярные полосы (Мг = 0) возникают только в результате переходов между колебательными состояниями, из которых, по крайней мере, одно вырожденное (см. табл. 55). Сначала мы рассмотрим случай, когда верхнее состояние является вырожденным, а нижнее— невырожденным (это, например, имеет место для основных частот вырожденных колебаний). Такая полоса, разумеется, весьма напоминает перпендикулярную полосу, рассмотренную ранее (см. фиг. 128). Расщепление вырожденного колебательного уровня вследствие сил Кориолиса (фиг. 118) не приводит к расп1еплению линий полосы (подполос), так как при ДЛ ==4 1 с нижним невырожденным состоянием комбинируют только уровни )-1, а при —1—только уровни —I (согласно правилу о том, что между собой комбинируют только вращательные уровни с одинаковой по.нюй симметрией, а также согласно правилу отбора для уровне - -1 и —/).  [c.457]

Если верхнее состояние является вырожденным колебательным состоянием с кориолисовым расщеплением (С,-=7-О,), а нижнее состояние является полносимметричным, то имеет место дополнительное правило ЯуОН ДАГ=- 1 мАК = — 2 с нижним невырожденным состоянием комбинируют не все подуровни вырожденного состояния, а только подуровни -[- / при АК = — 1 и АК = - -2 — только подуровни — /. Если вырожденным состоянием является нижнее, то справедливо обратное правило.  [c.470]

На фиг. 10, а и 10, б показаны электронно-колебательные типы вырожденных и невырожденных электронных состояниях молекул типов JJ h и D h при у <4. На основе этих диаграмм и приведенных правил нетрудно построить подобные диаграммы для других электронных типов и других точечных групп. В результате электронно-колебательного взаимодействия получается столько же различных электронно-колебательных уровней, сколько электронно-колебательных типов соответствует каждому колебательному уровню, lio вырожденные (Е, F,. . . ) электронно-колебательные уровни при этом не расщепляются. В частности, самый пижний колебательный уровень вырожденного электронного состояния всегда остается нерасщепленным электронно-колебательным уровнем и вырожден так нш, как электронное состояние. Это положение сохраняет силу даже тогда, когда возможны колебания с большой амплитудой, например при наличии нескольких потенциальных минимумов, разделенных низкими (преодолимыми) барьерами (см. стр. 13). Расщепление возникнет лишь при взаимодействии с вращением (разд. 3).  [c.45]

Теорема Яна — Теллера. Прежде чем переходить к оценке величины расщепления между различными электронно-колебательными уровнями, полученными описанным выше способом, следует рассмотреть расщепление потенциальной функции при неполносимметричных смещениях ядер точно так же, как это было сделано при рассмотрении линейных молекул. Причина расщепления потенциальной кривой в рассматриваемом случае качественно такая же, как у линейных молекул при смещении ядер симметрия понижается и, как правило, все электронные состояния становятся невырожденными вместо одного дважды вырожденного электронного состояния при смещении ядер получаются два невырожденных электронных состояния со слегка различными энергиями. Аналогично вместо трижды вырожденного электронного состояния получаются в зависимости от типа смещения либо три невырожденных состояния, либо одно невырожденное и одно дважды вырожденное.  [c.45]

Ф и г. 24. Корреляция электронно-колебательных уровней вырожденного деформационного колебания молекулы групп Сз е уровнями двух соответствующих невырожденных деформационных колебаний деформированной молекулы группы С . а — при невырожденном электронном состоянии молекулы группы Сз б — при вырожденном электронном состоянии молекулы группы Сз переход от малого к очень большому взаимодействию по Яну — Теллеру. С правого края уровни обозначены в соответствии с симметрией С , причем предполагается только один потенциальный минимум. Расщепление, обуслов-леняоо наличием двух других таких же минимумов, показано во второй колонке уровней, расположенных справа.  [c.64]

Вращательные уровни для невырожденных колебательных уровней невырожденных синглетных электронных состояний. Простейшие случаи вращательных уровней молекул типа симметричного волчка в невырожденных синглетных электронных состояниях нами подробно уже рассматривались [23], а поэтому здесь можно ог])аничигься лишь подведением итогов. Вращательные термы вытянутого волчка при отсутствии колебательных (или электронных) вырождений описываются следующим выражением  [c.85]

Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]

Если одинаковые ядра имеют спин I = /г (и следуют статистике Ферми), то существуют оба вращательных уровня А ж Е (т. е. Л, А , Е и Е" полной группы симметрии), но не Ау (т. е. не А и А ). Слагаемые, обусловленные ядерным спином в статистических весах уровней А2 и Е, равны соответственно 4 и 2. Еслрг одинаковые ядра имеют / = 1 (и следуют статистике Бозе), то существуют все три типа вращательных уровней А1, А2, Е со статистическими весами 10 1 8 а если одинаковые ядра имеют спин I — (статистика Ферми), веса равны 4 20 20. Таким образом, в невырожденном электронно-колебательном состоянии статистические веса как функция от К чередуются при / = /3 — 4 2 2 4  [c.95]


Из-за различных статистических весов вращательных уровней Ах и А2 при А — О чередуются как функция от J и веса в невырожденном электронно-колебательном состоянии. В электронно-колебательных состояниях А[ ж А1 соотношение весов четных и нечетных вращательных уровней при / = О равно 1 О, при I = /2 равно О 4, при I = X равно 10 1 и при / = 2 равно 4 20, а в электронно-колебательных состояниях А , и А1 — наоборот. Такие же соотношения весов сохраняются для нар уровней Ах, 2 с каждым / при А = 3, 6,. .. в невырон денных состояниях и аналогичные — для компонент Ах, А уровней или (—I) при К = = 1, 2, 4, 5,. . . в вырожденных электронно-колебательных состояниях (фиг. 36).  [c.95]

Член, очень похожий на (1,130), по Чайлду [191], надо добавить и в формулу вращательной энергии электронно-колебательного состояния / = 1/2 вырожденного электронного состояния ири наличии взаимодействия Яна — Теллера (дая в если не возбул -дено вырожденное колебание). Но теперь д получается из (1,129), и смещения должны быть гораздо большими, даже при не очень малом значении параметра Яна — Теллера В. Случай, который, по-видимому, может служить примером, наблюдался Дугласом и Хол-ласом [295] в возбужденном состоянии Е" молекулы КИз. На фиг. 37, б показаны расщепления (-Ь/)1— (—/ ) при А = 1 и А = 2 для этого состояния, в котором однократно возбуждено невырожденное колебание Уг. Если применить шкалу гораздо меньшего масштаба, то хорошо заметны большое /-удвоение и большое отклонение расщепления (+/) — (—/) от постоянного значения. Разумеется, и удвоение, и смещение могут быть частично (или полностью) обусловлены взаимодействием с соседним состоянием Л2.  [c.100]

Тонкая структура невырожденных электронно-колебательных состояний. Во вращательных уровнях данного электронно-колебательного уровня, имеюпщх одно и то же /, но различные типы, по-разному проявляется влияние кориолисова взаимодействия с вращательными уровнями других электронно-колебательных уровней, влияние центробежного растяжения или других взаимодействий более высоких порядков. Поэтому в достаточно высоком приближении существует расщепление на столько уровней, сколько показано числом горизонтальных линий на фиг. 38. Иными словами, когда молекула деформирована центробежными силами или неполносимметричными колебаниями, она перестает быть строго симметричным волчком и исчезает причина для (21 - - 1)-кратного вырождения. Вырождение снимается в той мере, в какой нарушена симметрия. Получающиеся расщепления подробно рассмотрены Яном [617], а затем Хехтом [485]. К сожалению, эти расщепления нельзя описать простыми формулами. Они зависят от матричных элементов различных возмущающих членов.  [c.103]

Переходы между невырожденными электронными состояниями. Возбужденные колебательные уровни полносимметричного колебания являются также полносимметричными. Поэтому очевидно, что в соответствии с общим правилом отбора в спектрах симметричных молекул будут наблюдаться прогрессии полос, обусловленные возбуждением иолносимметричных колебаний и совершенно аналогичные прогрессиям полос в спектрах несимметричных молекул, рассмотренным выше. Например, если имеются два полносимметричных колебания, то полосы могут быть помещены в такую же двойную таблицу Деландра, какая была рассмотрена в предыдущем разделе (фиг. 51). Положение максимумов интенсивности в каждой прогрессии определяется.  [c.151]

Качественно это различие можно объяснить на основе принципа Франка — Кондона, если рассмотреть потенциальную функцию верхнего состояния Е с О = 2,5 (фиг. 23, в) и нормальную потенциальную функцию невырожденного нижнего состояния, имеющую минимум у начала координат. Переходы из минимума верхней кривой на нижнюю, очевидно, образуют прогрессию с максимумом интенсивности при О, а переходы из минимума нижней кривой на верхнюю — при =т 0. Поскольку верхняя потенциальная кривая имеет две ветви, представляется естественным, что в действительности наблюдаются два максимума. Один из них соответствует переходу на колебательный уровень, лежащий выше точки пересечения ветвей, другой — на уровень, лежащий ниже этой точки. Интересно сравнить такое распределение интенсивности с распределением в случае, когда возбужденное состояние невырождено, а равновесная конфигурация ядер несимметрична. Очевидно, что распределение интенсивности будет аналогичным, за тем исключением, что в прогрессии полос, наблюдаемой в поглощении, будет только один максимум интенсивности.  [c.166]

Запрещенные переходы между невырожденным электронными состояниями. Из общего правила отбора следует, что при всех запрещенных электронных переходах, которые становятся возможными вследствие электронно-колебательных взаимодействий, полоса 0—0 отсутствует, как и все другие колебательные переходы, разренуенные при разреятенпом электронном переходе. Как было показано выше, отсутствие в спектре полосы О—О при электронных переходах, запрещенных но симметрии, является строгим для электрического дипольного излучения, если можно пренебречь электронновращательным взаимодействием (т. е. в отсутствие вращения) ).  [c.175]


Смотреть страницы где упоминается термин Невырожденные колебательные состояния : [c.393]    [c.440]    [c.481]    [c.616]    [c.188]    [c.92]    [c.358]    [c.615]    [c.63]    [c.89]    [c.91]    [c.106]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



Вращательная структура электронных состояний невырожденных электронно-колебательных уровней

Колебательные

Невырожденные колебательные состоянии. Вырожденные колебательные состояния. Свойства симметрии вращательных уровней. Инверсионное удвоение. Возмущения Инфракрасный спектр

Невырожденные колебательные состояния вращательные уровни энергии

Невырожденные колебательные состояния. Вырожденные колебательные состояния. Свойства симметрии вращательных уровней. Инверсионное удвоение. Кориолисово расщепление вращательных уровней Инфракрасный спектр

Свойства симметрии вращательных уровней.— Тонкая структура невырожденных электронно-колебательных состояний,— Тонкая структура в вырожденных электронно-колебательных состояниях Молекулы тина асимметричного волчка

Симметричные волчки) вращательные уровни энергии в невырожденном и вырожденном колебательных состояниях

Состояния колебательные



© 2025 Mash-xxl.info Реклама на сайте