Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молекулы ориентация

И потерь от дипольной поляризации, В зависимости от конкретных условий может преобладать та или иная составляющая. Это положение иллюстрирует график зависимости tg б совола от температуры, представленный на рис. 2-14. При невысоких температурах преобладают дипольные потери потери от токов утечки очень малы. При отрицательных температурах вследствие высокой вязкости совола, малой тепловой подвижности его молекул ориентация их электрическим полем затруднена. Молекулы находятся как бы в заторможенном состоянии. При повышении температуры вязкость падает, подвижность молекул возрастает и облегчается ориентация их электрическим полем, что приводит к увеличению интенсивности дипольной поляризации и к росту tg б. Температурный максимум приходится на некоторые оптимальные условия подвижность молекул  [c.54]


Ориентация молекул полимера при течении. При движении расплава полимера вдоль каналов под действием давления происходит вытягивание полимерных молекул (ориентация) вдоль оси движения. Ориентация молекул происходит как при движении рас-. плава вдоль цилиндра, так и при заполнении форм расплавом, осо- ) бенно если эти формы предназначены для изготовления изделий несложной конфигурации (дисков, плит, брусков и т. п.).  [c.16]

Je sin 6d9 — число молекул, ориентация которых изменяется от 9 до [9,9+d9] в единицу времени  [c.273]

Ориентированная адсорбция незаряженных полярных или поляризуемых частиц на границе раздела фаз с образованием двойного электрического слоя в пределах одной фазы адсорбция молекул воды (рис. 106, э) на металле ориентация дипольных молекул у поверхности раздела жидкость —газ (рис. 106, и) — адсорбционный потенциал.  [c.150]

Воздействие ультразвука на электрохимические процессы, включающие и процессы электрохимической коррозии металлов, складывается из целого ряда эффектов 1) перемешивания, которое устраняет концентрационную поляризацию 2) активационного воздействия на реагирующие частицы и внедрения их в двойной электрический слой (изменение состояния ионных атмосфер и гидратации частиц, преимущественная ориентация ионов и молекул) 3) влияния на переход электронов (за счет возбуждения  [c.368]

Абсолютное значение константы К характеризует пригодность данного вещества к использованию его в ячейке Керра. Обычно постоянной Керра называют эту величину, выраженную в длинах волн, т.е. К/Х. Она заметно уменьшается с повышением температуры жидкости, так как тепловое движение молекул препятствует их ориентации. Для нитробензола она достаточно велика — эффект легко наблюдается при подаче на конденсатор импульса напряжения с амплитудой в несколько сотен вольт. Наблюдение эффекта Керра в других жидкостях (а особенно в газах) требует использования значительно большей напряженности электрического поля.  [c.122]

Специфический характер ядерных сил проявляется также и в том, что величина силы ядерного взаимодействия между двумя нуклонами зависит не только от расстояния между ними, но и от взаимной ориентации их спинов. Например, интенсивность взаимодействия пир при параллельных спинах отличается от их взаимодействия при антипараллельной ориентации спинов. Наиболее убедительным подтверждением этого вывода являются результаты опытов по рассеянию медленных нейтронов на молекулах ортоводорода (с параллельной ориентацией спинов обоих протонов,  [c.136]


Молекулярно-кинетическое вычисление анизотропии, возникающей под действием электрического поля, требует статистического учета всех возможных ориентаций молекул под действием внешнего поля Е и теплового движения. Оно приводит к результатам, согласным с опытом, а именно постоянная Керра должна быть пропорциональна квадрату напряженности внешнего поля и уменьшается с увеличением температуры, ибо под действием тепловых столкновений расстраивается ориентация молекул, определяющая возникновение анизотропии.  [c.534]

В частности, выражение (156.15), выведенное для изотропного кубического кристалла, переносится на газ и на жидкость (в предположении, что указанные среды в силу статистического беспорядка в ориентации молекул также изотропны). Конечно, эти соображения далеко не убедительны, и справедливость в ряде случаев формулы Лоренц — Лорентца вызывает большее удивление, чем то, что нередко обнаруживаются значительные отступления от нее.  [c.558]

Вследствие теплового движения анизотропных молекул среды кроме флуктуаций плотности возникают также и флуктуации ориентаций анизотропных молекул, или флуктуации анизотропии. Это означает, что статистический характер движения молекул приводит к тому, что в объемах, малых по сравнению с длиной волны света, в некотором направлении оказалось больше молекул, ориентированных одинаково, чем в любом другом направлении. Такая преимущественная ориентация анизотропных молекул или такие флуктуации анизотропии создадут оптическую неоднородность и, следовательно, вызовут рассеяния света.  [c.590]

Перечисленные выше причины изменения показателя преломления связаны с воздействием поля световой волны на концентрацию и ориентацию молекул, т. е. на ее внешние степени свободы. Рассмотрим теперь влияние поля на поляризуемость молекулы. При выяснении этого вопроса будем исходить из простой классической модели, подробно обсужденной в 156. Согласно этой модели, поляризация среды определяется смещением х электронов из их положений равновесия, причем  [c.835]

Свет, испускаемый каким-либо отдельно взятым элементарным излучателем (атомом, молекулой), в каждом акте излучения всегда поляризован. Но макроскопические источники света состоят из огромного числа таких частиц — излучателей, а пространственная ориентация векторов электрического и магнитного по ей, а также моменты актов испускания света отдельными частицами в большинстве случаев распределены хаотически. Поэтому в общем излучении направление векторов электрического и магнитного полей непредсказуемо. Подобное излучение называется неполяризованным, или естественным светом.  [c.8]

При рассмотрении реальной молекулы Нг возникает дополнительная трудность, связанная с тем, что нз жно решать не одноэлектронную, а двухэлектронную задачу. В этом случае необходимо учитывать принцип запрета Паули. Основному состоянию молекулы На (притяжению) отвечает в соответствии с этим принципом размещение обоих электронов на низшем энергетическом уровне с противоположной ориентацией спинов, как это показано на 80  [c.80]

Очевидно, что макроскопические свойства диэлектрических материалов обусловлены микроскопическими процессами, происходящими в них при наложении электрического поля. Существует несколько таких процессов, приводящих к возникновению поляризации смещение электронных оболочек атомов и ионов, смещение положительных ионов относительно отрицательных, ориентация в электрическом поле молекул, обладающих постоянным дипольным моментом, и др.  [c.277]

Во многих диэлектриках имеются молекулы, которые обладают собственным электрическим моментом Ро, т. е. представляют собой диполи даже в отсутствие внешнего электрического поля. В ряде случаев при изменении направления ориентации диполей во внешнем электрическом поле возникают упругие возвращающие силы. Очевидно, что это наблюдается тогда, когда диполи более или менее жестко связаны, т. е. упругая дипольная поляризация имеет место в твердых диэлектриках — полярных кристаллах.  [c.281]

В газах и жидкостях, а также некоторых кристаллических диэлектриках полярные молекулы разориентированы за счет теплового движения, так что результирующая поляризация равна нулю. Под действием внешнего поля устанавливается некоторая преимущественная ориентация диполей в направлении поля. Поскольку  [c.281]


При больших напряженностях поля тепловое движение почти не препятствует ориентации диполей по полю. Таким образом, подавляющее большинство молекул поворачивается в направлении поля и средний дипольный момент становится не зависящим от поля. Наступает насыщение. Весьма приближенное вычисление OdT, основанное на аналогии с тепловой ионной поляризацией, не позволяет решить задачу о насыщении.  [c.289]

Электрическая поляризация вещества, состоящего из полярных молекул, отличается от электрической поляризации вещества, состоящего из неполярных молекул. Молекулы, имеющие постоянные дипольные моменты, поляризуются полем не только вследствие индукции, т. е. появления наведенного дипольного момента, определяемого поляризуемостью, но и вследствие ориентации молекул полем. При отсутствии поля молекулы в результате теплового движения расположены хаотично (рис. 16.2, а) и поэтому векторная сумма всех моментов диполей в среднем близка к нулю. При наложении внешнего электрического поля на каждый диполь действуют силы, стремящиеся ориентировать его параллельно электрическому полю (рис. 16.2,6). В этом случае сумма всех дипольных моментов молекул уже не равна нулю и диэлектрик приобретает электрический момент. Такой тип поляризации называют ориентационной, или дипольной, поляризацией.  [c.7]

В отсутствие поля молекулы среды расположены хаотически, так что на пути распространения световой волны по любому направлению и с любой ориентацией электрического вектора будут встречаться в среднем одинаковые условия, т. е. в макроскопическом смысле среда является изотропной. Наложение внешнего электрического поля вызовет преимущественную ориентацию молекул, что приведет к появлению в среде выделенного направления, характеризующегося большей поляризуемостью молекул, чем другие направления. В результате среда превращается в анизотропную. Поэтому скорость распространения световой волны будет зависеть от расположения электрического вектора волны внутри среды  [c.66]

Ориентация молекул под действием внешнего электрического поля может происходить двояким образом. В случае неполярных молекул, т. е. молекул, не обладающих постоянным дипольным моментом, под действием поля происходит поляризация молекул (индукция или наведение дипольного момента).  [c.67]

В случае полярных молекул, обладающих постоянным дипольным моментом, поляризация происходит не только вследствие индукции, но и вследствие ориентации молекул электрическим полем. Однако следует учитывать тот факт, что направление постоянного дипольного момента в молекуле может не совпадать с направлением  [c.67]

Таким образом, зависимость эффекта Керра от квадрата напряженности поля обусловлена тем, что искусственная анизотропия в электрическом поле зависит, во-первых, от способности молекул поляризоваться под действием электрического поля и, во-вторых, от степени ориентации поляризованных молекул в этом же поле.  [c.68]

Эффект Коттона — Мутона во многом аналогичен эффекту Керра. По своим магнитным свойствам молекулы делятся на парамагнитные молекулы (р>1), обладающие постоянным магнитным моментом, и диамагнитные молекулы (н<1), которые не имеют постоянного магнитного момента, но могут приобретать его в магнитном поле. Анизотропия среды под действием магнитного поля возникает либо благодаря ориентации парамагнитных молекул (по аналогии с полярными молекулами), либо благодаря анизотропии магнитной восприимчивости  [c.69]

Рис. 12.1. Молекулярно-фиксироваи-пые оси для линейной молекулы. Ориентация осей х, у, г) относительно системы осей (I, Ч, S) определяется углами Эйлера (О, Ф, 0), а ориентация осей (х, у, z ), пспользуемых в изоморфном гамильтониане, определяется углами Эйлера (9, Ф, х) с произвольным X. Деформационное колебание описывается амплитудой Qj и углом Ог - Рис. 12.1. Молекулярно-фиксироваи-пые оси для <a href="/info/322806">линейной молекулы</a>. Ориентация осей х, у, г) относительно системы осей (I, Ч, S) определяется углами Эйлера (О, Ф, 0), а ориентация осей (х, у, z ), пспользуемых в <a href="/info/566716">изоморфном гамильтониане</a>, определяется углами Эйлера (9, Ф, х) с произвольным X. <a href="/info/322990">Деформационное колебание</a> описывается амплитудой Qj и углом Ог -
Tiit(6)sin6ii6-число молей молекул с внутренней координатой в интервале [в,в- -М] Je sillSdS — число молекул, ориентация которых изменяется от в до в единицу времени  [c.275]

Для того чтобы вещество могло выполнять функцию ингибитора травления, оно должно иметь в общем случае одну или несколько полярных групп, посредством которых молекула могла бы присоединяться к поверхности металла. Обычно они представляют собой органические соединения, содержащие азот, амины, серу или группу ОН. Важное значение для эффективности ингибитора имеют размер, ориентация, форма молекулы и распределение электрического заряда в ней. Например, обнаружено, что коррозия железа в 1т растворе соляной кислоты замедляется производными тиогликолевой кислоты и З-меркаптонронионовой кислоты в степени, которая закономерно зависит от длины цепи соединений [32]. Возможность адсорбции соединения на поверхности данного металла и относительная сила связи адсорбции часто зависят от такого фактора, как заряд поверхности металла [33]. Катодная поляризация в присутствии ингибиторов, которые лучше адсорбируются при потенциалах более от-  [c.269]


Деполяризация рассеянного света. Иной результат получается в том случае, когда молекула рассеивающей среды анизотропная. Если в первом случае было безразлично, как орнеитирована молекула по отношению к направлению электрического вектора падающего света, то во втором случае оно имеет существенное значение. В зависимости от ориентации молекулы по отношению к возбуждающему полю направление индуцированного колеблющегося диполя может совпадать с направлением электрического поля света (возбуждающего поля). В качестве примера рассмотрим предельный случай — полную анизотропию, т. е. модели так называемой жесткой налочки где поляризуемость во всех направлениях, кроме одного, совпадающего с осью палочки , равна нулю (а = а,  [c.316]

Авторы [2] при помощи аналогии топологического характера положительно отвечают на фундаментальный вопрос о возможности существования в природе магнитных монополей (полюсов магнита, существующих отдельно друг от друга, или, иными словами, магнитных зарядов). Исключительная важность данного вопроса заключается в том, что обнаружение (или доказательство невозможности существования) монополей позволило бы ответить на многие принципиальные вопросы естествознания. В частности, обнаружение магнитных зарядов было бы первым серьезным подтверждением теорий Великого объединения, единым образом описывающих электромагнитное, слабое и сильное взаимодействия [3] Суть аналогии состоит в создании в слоистых жидких кристаллах нематического и холестерического типов определенной топологии распределения векторов, описывающих ориентацию составляющих кристалл молекул. Данная топология аналогична топологии распределения векгоров магнитного поля вокруг гипотетического монополя Дирака. Таким образом, распределение векгоров ориентации молекул в жидких к-ристаллах можно визуально наблюдать в поляризационный микроскоп. Это позволяет по особенностям поведения жидких кристаллов выдвигать предположения о возможном поведении магнитных монополей и принципиальных методах их экспериментального обнаружения.  [c.15]

Существуют различные типы жидких кристаллов. Категорию нематических жидких кристаллов (или, как говорят для краткости, нематиков) составляют среды, которые в своем недеформирован-ном состоянии однородны не только макро-, но и микроскопически анизотропия среды связана только с анизотропной ориентацией молекул в пространстве (см. V, 139, 140). Подавляющее большинство известных нематиков относится к простейшему их типу, в котором анизотропия полностью определяется заданием в каждой точке среды единичного вектора п, выделяющего B efo одно избранное направление вектор п называют директором. При этом значения п и —п, различающиеся лишь знаком, физически эквивалентны, так что выделенной является лишь определенная ось, а два противоположных направления вдоль нее эквивалентны. Наконец, свойства этого типа нематиков (в каждом элементе их объема) инвариантны относительно инверсии — изменения знака всех трех координат ). Ниже мы рассматриваем только этот тип нематических жидких кристаллов.  [c.190]

По принятой терминологии к категории смектических жидких кристаллов (или смектиков) относятся анизотропные жидкости разнообразной слоистой структуры. По крайней мере некоторые из них представляют собой тела с микроскопической функцией плотности молекул, зависяш,ей только от одной координаты (скажем, Z) и периодической по ней, р = р (2). Напомним (см. V, 128), что функцией плотности определяется распределение вероятностей различных положений частиц в теле в данном случае можно говорить о различных положениях молекул как целого, т. е. pdV есть вероятность центру инерции отдельной молекулы находиться в элементе объема dV. Тело с функцией плотности р (г) можно представлять себе как состоящее из свободно смещаюш,ихся друг относительно друга плоских слоев, расположенных на одинаковых расстояниях друг от друга. В каждом из Слоев расположение центров инерции молекул беспорядочно, и в этом смысле каждый из них представляет собой двумерную жидкость , жидкие слои, однако, могут быть как изотропными, так и анизотропными. Это различие может быть связано с характером упорядоченной ориентации молекул в слоях. В простейшем случае анизотропия распределения ориентаций задается всего одним направлением п (скажем, направлением длинной оси молекулы). Если это направление перпендикулярно плоскости слоев, слои изотропны, так что ось. z является осью аксиальной симметрии тела такова, по-видимому, структура так называемых смектиков А. Если же направление п наклонно к плоскости х, у, то в этой плоскости появляется избранное направление и осевая симметрия исчезает такова, по-видимому, структура так называемых смектиков С.  [c.228]

Подчеркнем, что директор п (понимаемый как избранное направление ориентации молекул в слоях) не является в смектиках (смектиках А) независимой гидродинамической переменной. Для переменной п в гидродинамике нематиков характерно, что однородный поворот поля п (г) во всем теле не связан с изменением энергии. Именно поэтому медленное изменение п вдоль тела связано лишь с малым изменением энергии, последняя зависит только от производных от п и может быть разложена по ним. В смектиках же всякий такой поворот меняет ориентацию относительно слоистой структуры и был бы связан со значительным изменением энергии. Отметим, что в смектиках С, где директор наклонен к нормали под некоторым определенным углом, однородный поворот направлений п вокруг нормалей с сохранением величины угла наклона снова не был бы связан с изменением энергии. Поэтому здесь снова появляется новая гидродинамическая переменная — проекция п на плоскость слоев.  [c.231]

Анизотропия среды может обусловливаться как анизотропией составляющих ее частиц, так и характером их взаимного расположения. При этом изотропная среда может быть построена из анизотропных частиц, а анизотропная среда — из частиц изотропных равным образом возможны и иные комбинации. Так, нетрудно видеть, что, например, молекула водорода Н.2 анизотропна, т. е. свойства ее вдоль линии, соединяющей оба атома водорода, отличны от свойств в направлении, перпендикулярном к осевой линии поляризуемость молекулы, т. е. смещение электрона под влиянием заданной электрической силы, вдоль оси иная, чем перпендикулярно к ней. Тем не менее, водородный газ не обнаруживает эни ютропных свойств вследствие беспорядочности ориентаций водородных молекул усредненные свойства газа оказываются идентичными по всем направлениям. Если же подобные анизотропные молекулы ориентируются определенным образом, то и вещество в целом обнаруживает анизотропию.  [c.496]

Ориентация анизотропных молекул под действием внешнего электрического поля может происходить двояким образом. Первоначальная теория (Ланжевен, 1910 г.) рассматривала молекулы, которые не имеют собственного электрического момента, но приобретают его под действием внеи]него поля. В первом приближении величину приобретенного молекулой момента р можно считать пропорциональной напряженности внешнего поля , т. е. р = кЕ. Для анизотропных молекул к зависит от направления внутри  [c.532]

Аналогично возникновению двойного лучепреломления в электрическом поле возможно также и создание искусственной анизотропии под действием магнитного поля. Если анизотропные молекулы обладают дополнительно постоянным мдгнитным моментом (парамагнитное тело), подобно тому, как молекулы, будучи анизотропными, обладают постоянным электрическим моментом, то их поведение под действием магнитного поля должно представлять аналогию с явлением, наблюдаемым в электрическом поле. В отсутствие внешнего магнитного поля хаотическое расположение молекул обеспечивает макроскопическую изотропию среды, несмотря на анизотропию отдельных молекул. Наложение достаточно сильного магнитного поля, воздействующего на магнитные моменты молекул, ориентирует их определенным образом относительно этого внешнего поля. Ориентация анизотропных молекул сообщает всей среде свойства анизотропии, которые можно наблюдать обычным способом. Действительно, удалось обнаружить возникковенпе двойного лучепреломления под действием сильного магнитного поля, направлен-  [c.536]


Если в диэлектрике имеются полярные молекулы и связь между ними невелика, то под действием поля они могут относительно легко поворачиваться. Ориентации диполей в поле препятствует тепловое движение. В результате возникает дипольная поляризация, 3ависящая от теплового движения.  [c.289]

Вместо молекул для ориентации в поляроидных пленках могут быть использованы и анизотропные микрокристаллы. Наиболее применимым для этой цели веществом является герапатит (периодидсульфат хинина). Его кристаллы имеют игольчатую форму, и ось наибольщего  [c.39]


Смотреть страницы где упоминается термин Молекулы ориентация : [c.67]    [c.291]    [c.177]    [c.34]    [c.26]    [c.54]    [c.113]    [c.315]    [c.136]    [c.42]    [c.199]    [c.532]    [c.533]    [c.834]    [c.289]   
Технология органических покрытий том1 (1959) -- [ c.27 , c.29 ]



ПОИСК



Ориентация



© 2025 Mash-xxl.info Реклама на сайте