Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пара вращений определение

Определение 2.13.1. Пусть поле скоростей твердого тела представляется в виде суммы вращательного поля репера 5 с угловой скоростью и), основание которой проходит через полюс О, и вращательного поля в репере 5 с угловой скоростью —ш, имеющей основание, параллельное и. Такая система угловых скоростей называется парой вращений.  [c.127]

Аналогично определению момента пары вращений назовем моментом пары скользящих векторов векторное произведение  [c.164]


Кинематические пары, образующие цепь, могут иметь некоторое число одинаковых связей. Например, вСе геометрические оси пар вращения могут быть соответственно параллельными между собой. Если в механизмах нет других пар, то в указанном случае все звенья будут двигаться только в параллельных плоскостях, перпендикулярных осям вращения. Эти механизмы называют плоскими (в отличие от пространственных, являющихся наиболее общим видом механизмов). Другим примером этого рода является механизм, имеющий такие пары вращения, оси которых пересекаются в одной точке. Звенья этого механизма движутся по поверхностям концентрических сфер. Такой механизм называют сферическим. При определении числа степеней свободы плоских и сферических механизмов можно сразу уменьшить на три как число свободных координат, так и число связей, налагаемых каждой кинематической парой. При таком подходе окажется, что в плоских механизмах низшие пары налагают по две связи, а высшие — по одной.  [c.13]

Та как имеется три вида пар вращения, перемещения и качения, то существует только шесть возможных сочетаний их этим сочетаниям могут быть присвоены ясные определения, гарантирующие, что все многочисленные будущие конструкции ими охватываются [42].  [c.129]

Таким образом, прикладывая симметричные или кососимметричные, противоположно направленные пары на определенных расстояниях от опор вала ротора, получим при вращении вала воздействие, эквивалентное воздействию проекций соответствующих гармоник.  [c.188]

В частном случае, когда слагаются два равных вращательных движения, направленных в противоположные стороны (так называемая пара вращения), предыдущий способ определения сложного движения не может быть приложен, потому что в этом случае из соотношения е. 0 С= О) 00 будем иметь пропорцию  [c.112]

Оставшиеся возможные движения могут быть или независимыми друг от друга, или же быть одно с другим связаны какими-нибудь дополнительными геометрическими условиями, устанавливающими функциональную связь между движениями. Например, в кинематической паре винта и гайки (винтовой паре) вращение винта вокруг оси вызывает его поступательное движение, причем оба эти движения связаны определенной аналитической зависимостью.  [c.23]

Для повышения точности делительной цепи зубофрезерного станка применяют специальные коррекционные устройства, монтируемые на гитаре деления станка (фиг. 44). По данным измерения погрешностей делительной цепи стола станка изготовляются кулаки 2 я 9, рабочие поверхности которых соответствуют накопленным (за оборот стола) и циклическим (за оборот делительного червяка) погрешностям, но создают обратное по направлению действие один из кулаков каждой пары соответствует определенному направлению вращения стола станка. Система колес 3 обеспечивает поворот кулаков 2 синхронно вращению стола.  [c.153]


Разборка. Узлы с подшипниками качения надо разбирать очень осторожно, соблюдая требования по разборке прессовых соединений. Перед демонтажем тяжело нагруженных подшипников, например якорных подщипников тягового электродвигателя, букс колесных пар и т.п., необходимо пометить положение, занимаемое наружным кольцом относительно корпуса. После очистки отью-кание неисправностей подщипника заключается в его осмотре, проверке хода , т. е. легкости и равномерности вращения, определении износа и деформации деталей. При осмотре для более тщательного контроля поверхностей качения однорядные радиально-упорные, роликовые и другие подшипники разъемной конструкции разбирают, а у двухрядных сферических подщипников внутренние кольца вместе с сепараторами и шариками (роликами) поворачивают на 90° относительно наружного кольца у радиальных однорядных шарикоподшипников с одной или двумя защитными шайбами последние снимают.  [c.96]

Использование противоюзных устройств, предупреждающих заклинивание колесных пар при коэффициенте сцепления ниже допускаемой величины, когда тормозная сила становится больше силы сцепления колес с рельсами, позволяет также увеличить силу нажатия тормозных колодок примерно на 10 %. Противоюзными устройствами механического (инерционного) типа, срабатывающими при превышении замедления частоты вращения колесной пары более определенной величины, оборудованы вагоны международного сообщения.  [c.200]

Этого набора факторов достаточно для определения оптимальных соотношений индуктора при фиксации конструктивного исполнения, числа пар полюсов и активных изоляционных материалов. Конечно, указанные данные принципиально также можно рассматривать в виде факторов, что приведет к более универсальным регрессионным уравнениям. Однако резкое увеличение числа факторов сопровождается неоправданной громоздкостью регрессионных уравнений и большими осложнениями в обработке и оценке результатов факторного эксперимента. Учитывая, что при проектировании синхронных генераторов конструкция, материалы, частота вращения, частота напряжения известны до начала расчетов, эти данные можно считать фиксированными без особой потери общности в конечных результатах.  [c.106]

В зубчатых передачах вращение от одного колеса к другому передается за счет усилий в точках контакта поверхностей зубьев, образующих высшую кинематическую пару. Для обеспечения непрерывного зацепления зубьев и постоянного передаточного отношения, т. е. отношения угловых скоростей колес передачи, профили зубьев должны быть очерчены определенными кривыми. Чтобы установить, какими именно кривыми должны быть очерчены профили зубьев, рассмотрим передачу вращения от оси О, к оси посредством давления профиля / на профиль 2 (рис. 18.2, а). В точке К их соприкосновения линейные скорости точек обоих профилей будут  [c.179]

В зубчатом механизме с зацеплением Новикова основной закон зацепления, в отличие от эвольвентного, как уже указывалось ранее, соблюдается лишь в одном определенном сечении. Процесс зацепления начинается на одном торце и заканчивается на противоположном. Поэтому для непрерывности вращения ведомого колеса прежде, чем точка контакта данной пары зубьев дойдет до противоположного торца, в контакт должна вступить последующая пара зубьев.  [c.125]

Опыт подтверждает выводы этой простой теории, и вращение плоскости поляризации парами металлов и другими веществами широко используется в современной атомной физике для определения атомных констант, а также для ряда других весьма тонких измерений.  [c.168]

Вектор ш, для определенности с началом в точке В, направленный ортогонально к плоскости пары в сторону, откуда вращение векторов пары кажется происходящим против часовой стрелки, и равный по величине т =  [c.17]

Для определения температуры вспышки и температуры воспламенения может быть применен прибор с открытым тиглем (ГОСТ 13921—68). При испытании органических веществ (в основном, нефтепродукты) чаще всего используется прибор Мартенс-Пенского с закрытым тиглем (рис. 9-6). Он состоит из металлического сосуда — тигля с крышкой 7, имеющей две части нижнюю, неподвижную, и верхнюю, которую можно поворачивать на некоторый угол в ту и другую сторону. В каждой части крышки есть отверстия, которые могут совпадать или закрываться в зависимости от положения поворачивающейся части крышки. К крышке приделана также трубка 6, внутри которой проходит стержень. При вращении головки 5 этого стержня подвижная часть крышки начинает поворачиваться, благодаря чему достигается совпадение отверстий. Одновременно к открывающейся поверхности испытуемого масла подносят маленькую горелку 2, длина пламени которой устанавливается 3—4 мм. Если же головку 5 отпустить, то части прибора приходят в первоначальное положение. В неподвижной части крышки имеется приспособление для укрепления термометра 4, а в центре крышки проходит стержень мешалки 3. Последняя имеет две пары лопастей нижние находятся в масле, верхние — над маслом, в пространстве, где накопляются пары масла. Весь прибор помещен в воздушную баню /, подогреваемую горелкой 5.  [c.172]


Силы инерции — силы, распределенные по всему звену. При определении динамических реакций в кинематических парах для удобства оперирования силы инерции звена приводят к одной равнодействующей при поступательном движении звена (неравномерном) — к равнодействующей, приложенной к центру тяжести звена при неравномерном вращении звена относительно неподвижной оси О с угловой скоростью со и с угловым ускоре-  [c.132]

Заметим, что изложенное определение положений звеньев кривошипно-ползунного механизма векторным методом представлено в явной форме для пространственного механизма общего вида. В частном случае, если механизм используют как передаточный, сферическую с пальцем кинематическую пару В заменяют сферической. При этом вращение шатуна не имеет значения и перемещение ползуна можно просто определить из соотношения  [c.51]

Определение давлений на кинематические пары звена. Положим, что вал с деталью вращается вокруг оси с постоянной угловой скоростью со. Получающаяся при технологическом процессе производства детали (отливке и последующей механической обработке) неоднородная плотность металла всегда приводит к тому, что центр тяжести S вращающейся системы смещается с геометрической оси вращения. Иногда на валу вместе с деталями симметричной формы находятся кулачки, эксцентрики и другие тела, имеющие несимметричную форму и вызывающие смещение с оси вращения общего центра тяжести вращающейся системы.  [c.415]

Аналитическое определение передаточных отношений может быть выполнено на основе метода обращения движения. Сообщим всем звеньям механизма угловую скорость, равную по модулю и противоположную по направлению угловой скорости водила ощ. Тогда водило становится неподвижным, и механизм из планетарного обращается в механизм, состоящий из двух последовательно соединенных пар зубчатых колес 1, 2 и 2, 3 с неподвижными осями вращения. Этот механизм назовем обращенным. Для него передаточное отношение от колеса 1 к колесу 3, выраженное через числа зубьев, находится как для обычных зубчатых передач с неподвижными осями вращения колес  [c.55]

Кулачковые механизмы. Кинематический анализ кулачкового механизма сводится к определению скорости толкателя Уг при заданной угловой скорости кулачка ац (рис.1.27). Для этой цели можно воспользоваться теоремой об отношении скоростей в высшей кинематической паре. Задача будет сводиться к определению последовательных положений мгновенного центра вращения (точки Р ,  [c.44]

Главнейшим из свойств пары является число геометрических параметров, с помощью которых можно определить относительное положение связанных звеньев. Например, при соприкосновении по поверхности вращения относительное положение звеньев вполне определяется заданием одного лишь параметра — угла относительного поворота звеньев в плоскости, перпендикулярной оси вращения. При соприкосновении по сферической поверхности таких параметров уже три — это углы поворота вокруг трех взаимно перпендикулярных осей, пересекающихся в центре сферы. Из приведенных примеров ясно, что элементы кинематической пары накладывают на относительное движение звеньев некоторые ограничения, связывая между собой определенным образом координаты точек обоих звеньев. Например, если звенья соприкасаются по сферической поверхности, то центр сферы можно рассматривать как воображаемую общую точку обоих звеньев. Поэтому линейные координаты точек обоих звеньев, совпадающих с центром сферы, будут всегда одинаковы. При этом, конечно, центр сферической полости физически не существует, что не мешает ему оставаться вполне реальным центром вращения всех физически существующих точек звена.  [c.8]

На рис. 131, б изображен механизм с высшей парой. По теореме о трех центрах мгновенный центр Р относительного вращения первого и второго звеньев лежит на прямой АВ. По доказанному выше он должен лежать на нормали NN к профилям. Поэтому центр Р лежит на пересечении линий АВ и NN. Из определения мгновенного центра вращения следует, что абсолютные скорости точек первого и второго звеньев, совпадающих с центром Р, одинаковы по величине Vp = vp .  [c.117]

Последовательность кинетостатического расчета определяется структурой механизма, характеризуемой порядком расчленения механизма на отдельные группы, начиная от ведущего звена. Это исследование механизма, как указано выше, начинается с анализа последней (считая от ведущего звена) присоединенной группы и заканчивается последовательным переходом от одной группы к другой, анализом ведущего звена. Для ведущего звена можно составить три уравнения равновесия. Неизвестных величин, подлежащих определению, имеется две — величина и линия действия давления в кинематической паре (ведущее звено — стойка), если ведущее звено совершает вращательное движение, и величина и точка приложения, если оно входит со стойкой в поступательную пару. Поэтому для ведущего звена, после того как прибавлены силы инерции, число уравнений равновесия, которое можно составить, превышает на единицу число неизвестных величин, подлежащих определению. Третье уравнение равновесия дает возможность определить уравновешивающую силу Ру или уравновешивающий момент Му, который нужно приложить к ведущему звену — кривошипу для уравновешивания всех сил, действующих на звенья механизма при вращении кривошипа. Звено, к которому приложена уравновешивающая сила Ру, при силовом расчете будем считать начальным звеном механизма. Реакция в начальном вращательном механизме зависит от способа передачи энергии начальному звену источником энергии.  [c.359]


Для определения положения нормали п—п вектор скорости точки касания начальных окружностей надо повернуть в сторону, противоположную направлению вращения ведущего колеса с внешними зубьями и по направлению вращения ведущего колеса с внутренними зубьями. При этом реакция, действующая на зуб ведущего колеса, всегда создает момент, направленный противоположно угловой скорости колеса, а реакция, действующая на зуб ведомого колеса, создает момент, направленный по угловой скорости этого колеса. При решении задач силового расчета зубчатых механизмов радиусы всех колес, угловая скорость oj ведущего звена 1 и момент сил полезных сопротивлений предполагаются заданными. Требуется определить реакции во всех кинематических парах и момент М-1 двигателя, который приводит в движение ведущее звено 1.  [c.370]

Вследствие трения, возникающего между деталью и призмами, балансировка оставляет некоторый дисбаланс, характеризующий оставшуюся неуравновешенность и измеряемый статическим моментом М = Ge, где G — вес балансируемой детали, а е — расстояние от центра тяжести 5 до геометрической оси вращения. Для определения оставшегося дисбаланса подвешивают постепенно у одного из каждой пары противоположных делений небольшие грузы, выводя из состояния покоя. Как только тело начнет медленно вращаться на призмах, добавочные грузики снимают и взвешивают. По минимальному значению веса этих грузиков находят более тяжелую часть детали, для уравновешивания которой  [c.421]

Для определения момента приведенной пары сил Ма представляем эту пару сил в виде двух составляющих одна из которых приложена в центре вращения начального звена, а другая в точке В, отстоящей от центра А на расстоянии Ua. Составляющие пары сил направляем перпендикулярно отрезку АВ. Определив составляющую F, приложенную в точке В, анало-  [c.142]

Известно, что относительное движение звеньев, вращающихся вокруг скрещивающихся осей с угловыми скоростями i и <02, является винтовым, т. е. может быть представлено как вращение вокруг мгновенной винтовой оси (оси мгновенного вращения-скольжения) с одновременным скольжением вдоль этой оси. Определение винта относительного движения по заданным скользящим векторам единственное решение, т. е. для звеньев, вращающихся вокруг скрещивающихся осей, существует лишь одна мгновенная винтовая ось. Обратная задача — нахождение векторов Ш] и 2 по заданному винту относительного движения — имеет бесчисленное множество решений, т. е. можно подобрать бесчисленное множество пар осей, вращение вокруг которых сводится к одному и тому же винту относительного движения. Каждая из этих пар осей называется сопряженной данному винту или парой осей составляющих вращений. Для одной точки контакта сопряженных поверхностей из бесчисленного множества пар осей составляющих вращений можно выбрать ту, через которую проходит общая нормаль к сопряженным поверхностям. Однако в общем случае каждой точке контакта соответствует своя пара осей составляющих вращений. Осями зацепления эти пары осей будут лишь в том случае, если они пересекаются общей нормалью к сопряженным поверхно стям в любой точке контакта. Другими словами, положения осей зацепления не зависят от положения контактной точки.  [c.407]

Во вращательной паре подлежат определению величина и направление реакции, так как ее линия действия проходит через ось вращения пары. В поступательной паре подлежат определению величина и точка прилоокения реакции, так как известно только то, что направление реакции всегда перпендикулярно оси направляющих пары. В высшей кинематической паре (паре IV класса) подлежит определению только величина реакции, так как реакция направлена по общей нормали к кривым, образующим пару, и приложена в точке их касания.  [c.104]

На паротурбинных электростандиях мы постояино встречаемся с превращениями различных видов энергии. При сжигании топлива в топке парового котла его химическая энергия превращается в тепловую, переда ваемую продуктам горения (дымовым газам). Дымовые газы нагревают воду, находящуюся в котле, до кипения и превращают ее в пар, обладающий определенным запасом тепловой энергии. За счет запаса тепловой энергии водяной пар, расширяясь в соплах паровой турбины, приобретает большую скорость и, поступая на рабочие лопатки ротора, заставляет его вращаться с определенным числом оборотов. Таким образом, в турбине тепловая энергия пара превращается в механическую работу вращения вала. Но вал турбины при помощи муфты соединен с валом ротора электрического генератора, и при вращении его в обмотке статора (неподвижной части) генератора получается электрический ток. В результате механическая энергия турбины превращается в электрическую.  [c.6]

При параллельной работе регулирование скорости поддерживает на турбоагрегате определенную нагрузку, изменяя впуск пара в турбину. Если вращать синхронизатор в сторону уменьшения оборотов, то можно через некоторое время вовсе прекратить впуск пара в турбину. Однако генератор при этом будет продолжать вращаться с частотой сети, забирая из нее энергию. Вместе с генератором будет вращаться и турбина. Так возникает вращение без пара. Вращение без пара может возникнуть не только при прикрытии клапанов регулирования, вызванном неограниченным вращением синхронизатора в сторону уменьшения оборотов. Любое закрытие паровпускных органов автоматических стопорных клапанов, главной паровой задвижки, задвижки в котельной и пр. вызовет переход на такое вращение. Вращение без пара может возникнуть и тогда, когда соседние турбоагрегаты (гидроагрегаты, дизельагрегаты) сети существенно смещают свои синхронизаторы в сторону увеличения. Возможен переход на вращение без пара и при больших колебаниях нагрузки на данной турбине, вызванных неисправностями системы регулирования.  [c.105]

Пятизвенный механизм AB D, состоящий из звеньев 1, 2, 3 п ползуна 4, скользящего в неподвижных направляющих х—х, обладает двумя степенями подвижности. Звенья 5 и 6 образуют винтовую пару. Устанавливая звено 6 в определенном положении относительно звена 5, можно менять расстояние АС. Вводя звено 6 в пару вращения со звеном 2, пятизвенный механизм AB D переходит в кривошипно-ползунный механизм A D с одной степенью подвижности.  [c.457]

Поступательные пары, высшие пары, должны быть преобразованы в пары вращения подходящим изменением радиусов кривизны. Определение однокривошипных механизмов не представляет затруднений. У двухкривошипного механизма должно быть два поводка, которые соединены одним шарниром. Коромысло с присоединенными поводками — характерный признак и многокривошипных механизмов, поэтому целесообразно при преобразовании механизма итти от коромысла через поводки к кривошипам.  [c.333]

Значит, результирующее движение поступательное. Нетрудно показать, что и наоборот, любое поступательное движение можно представить в виде пары вращений, вводя подходящие подвии ные системы отсчета. Что подвижные системы могут быть выбраны различными способами, видно из формулы (1.102). Важно, чтобы векторное произведение [ 2 О Рх], так называемый момент пары, — имело определенное значение.  [c.59]


Однако для определенности движения толкателя 2 достгиочно задать одно независимое движение кулачку I. Лишнюю (местную, локальную) степень свободы создает круглый ролик 3, так как его вращение вокруг своей оси D не влияет на движение других звеньев. Работа механизма не изменится, если ролик удалить, а профиль кулачка выполнить по эквидистанте (штриховая линия на рис. 1.4, а). Тогда толкатель 2 образует с кулачком / высшую пару >. Для заменяющего механизма (рис. 1.4,6) W = 3-2 2 2 — -1 = 1.  [c.9]

Для определения динамических реакций Ха, Уа, -а> а, У в подшипников, т. е. реакций, возникающих при вращении тела, присоединим ко всем действующим на тело заданным силам и реакциям связей силы инерции. всех частиц тела, приведя их к центру А (см. Ш). Тогда силы инерции будут представлены одной силой,, равной Л" и приложенной в точке Л, и парой сил с моментом, равным Проекции этого момента на оси к и у будут iM2=2m3 (Ft), здесьопять VHz=0, так как o= onst.  [c.353]

Методику вычисления 9 рассмотрим на примере манипулятора с двумя сферическими и одной вращательной парами (рис. 11,13, а). Для определения угла сервиса в некоторой точке Е рабочей зоны рассмотрим механизм манипулятора как пространственный четы-рехзвенник со сферическими парами Л, С, D и вращательной парой В, точка D центра схвата совпадает с заданной точкой Е (рис. 11.16, а). Сперва определим возможные положения звена D (схвата) в плоскости чертежа, а затем все его возможные положения в пространстве путем вращения плоского четырехзвенника относительно условной стойки AD длиной г, совпадающей с осью х пространственной системы координат Oxyz [5].  [c.330]

В реальных условиях эксплуатации предусматривают дополнительные относительные перемещения звеньев. Так, для равномерного износа фаски головки клапана по условиям работы (при контакте с седлом) следует допустить его произвольное проворачивание относительно оси. Поэтому в реальном механизме (рис. 2.23, а) кинематическая пара О выполняется цилиндрической 4-го класса. Возникшая подвижность — поворот клапана 3 относительно своей оси не влияет на определенность относительного поступательного движения звеньев, обеспечивающего функциональное назначение механизма. Для упрощения технологии изготовления и сборки кинематическую пару С (сферический шарнир с пальцем) целесооб-разно заменить кинематической парой 3-го класса С (сферическим шарниром). Однако при этом появляется вращение звена 2 относительно его продольной оси, проходящей через центр пары С, что нарушает нормальную работу механизма. В данном случае это движение вредно и должно быть устранено (например, введением специальных пружин 4).  [c.34]

Если на тело действуют несколько пар сил и эти пары лежат в одной плоскостп, то векторы моментов пар параллельны и вместо них можно рассматривать алгебраические моменты. Алгебраический момент пары сил равен взятому с определенным знаком произведению модуля одной из сил пары на ее плечо. Знак плюс берется в случае, когда мы видим вращение тела, вызываемое парой, происходящим против хода часовой стрелки таким образом,  [c.159]

Рассмотрим вал в форме тела вращения, скручиваемый парами, приложенными по концам (рис. 178). Мы можем принять ось вала за ось 2 и использовать полярные координаты г и G для определения положения элемента в плоскости поперечното сечения. Обозначения для компонент напряжения будут в этом случае иметь вид Or, сте, rz, гй, " вг- Компоненты перемещения в радиальном и окружном направлениях можно обозначить через и и V, а компоненту перемещения в направлении 2 — через w. Тогда, используя формулы, полученные ранее для двумерных задач ( 30), находим следующие выражения для компонент  [c.346]

AB D. Этот четырехзвенник может вращаться относительно оси, проходящей через центры сферических пар А и D. Поэтому для определения возможных положений отрезка D можно сперва найти его возможные положения в плоском четырехзвеннике, а затем вращать весь четырехзвенник относительно прямой AD. Кроме того, в пространственном механизме возможно вращение звеньев АВ и ВС относительно оси, проходящей через центры сферических пар Л и С. Но это вращение не оказывает влияния на положение отрезка D и потому в дальнейшем не рассматривается (это вращение соответствует одной степени маневренности).  [c.557]

Определение давлений звеньев вращательных пар с учетом сил трения. Ранее отмечалось, что линия действия силы давления (реакции) одного звена на другое при отсутствии трения всегда направлена по нормали к поверхностям касания звеньев и проходит через продольную ось вращательной пары. В случае действия силы трения Ftp = полная реакция R, состоящая из нормальной реакции N и этой силы трения, отклоняется от нормали на приведенный угол трения ф = ar tg (рис. 7.4, г). Линия действия реакции R для любого положения звеньев, составляющих вращательную пару, легко определяется с помощью так называемого круга трения. Построение круга трения производится следующим образом. Опустим из центра вращения шипа перпендикуляр ОА на линию действия реакции R. Длину этого перпендикуляра обозначим через а, причем из рис. 7.4, г видно, что а = г sin ф. Так как угол трения ср сравнительно мал, то можно положить sin ф = tg ф и а = г tg ф = /щГ.  [c.165]


Смотреть страницы где упоминается термин Пара вращений определение : [c.51]    [c.176]    [c.72]    [c.34]    [c.168]    [c.73]   
Краткий курс теоретической механики 1970 (1970) -- [ c.84 ]



ПОИСК



Определение вращения

Пара вращений



© 2025 Mash-xxl.info Реклама на сайте