Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютона тяготения закон теория

Коперник явился создателем гелиоцентрической теории движения планет вокруг Солнца, в которой Земле было отведено надлежащее место. Кеплер на основании обработки наблюдений движения планеты Марс установил законы движения планет. Эти законы впоследствии позволили Ньютону обосновать закон всемирного тяготения.  [c.21]

Исаак Ньютон (1642—1727) по праву считается основателем классической механики. Он Создал стройную систему механики, четко сформулировал ее аксиомы, ввел понятие массы и решил целый ряд проблем механики. Замечательно, что большинство открытий Ньютон сделал в течение двух лет, когда он был еще совсем юным. Об этих годах своей жизни Ньютон пишет, что в начале 1665 г. он открыл свой бином, в мае — метод касательных, в ноябре — прямой метод флюксий (дифференциальное исчисление), в январе 1666 г. — теорию цветов, в мае приступил к обратному методу флюксий (интегральное исчисление), в августе открыл закон всемирного тяготения.  [c.11]


Повседневный опыт говорит о наличии механического взаимодействия между материальными телами и их взаимодействия с физическими полями. При этом даже такое простейшее взаимодействие двух тел, как прямой контакт между ними, имеет далеко не простую природу и до сих пор привлекает внимание физиков. В частности, это относится к явлению трения между поверхностями соприкасающихся тел. Еще более сложны явления взаимодействия тел с физическими полями. До сих пор не существует общепризнанной теории тяготения, которая объяснила бы физическую природу этого явления. Между тем так называемый четвертый закон Ньютона о всемирном тяготении имеет простое количественное выражение, которым широко пользуются.  [c.12]

Силы инерции — переносная и кориолисова—для наблюдателя, связанного с неинерциальной системой, представляются вполне реальными они вместе с остальными приложенными силами влияют на изменение движения по отношению к этой неинерциальной системе. Отметим некоторые особые их свойства. Вспоминая перечисленные в 86 законы сил, заметим, что силы инерции, пропорциональные по самому их определению массам движущихся в неинерциальных системах отсчета точек, в некотором роде аналогичны силам тяготения. Как показывается в общей теории относительности, эта аналогия имеет глубокий физический смысл. Второй особенностью сил инерции является видимое отсутствие тех материальных тел, которые, согласно третьему закону Ньютона, могли бы рассматриваться как источники возникновения сил инерции. Это обстоятельство  [c.422]

Поле тяготения мы рассматривали на основе закона всемирного тяготения Ньютона, но этот закон не учитывает зависимости силы взаимного притяжения тел от времени. Иначе говоря, в нем предполагается, что действие сил притяжения проявляется мгновенно и не зависит от свойств пространства, разделяющего взаимодействующие тела . Свойства пространства и время в теории тяготения Ньютона не зависят от свойств материальных объектов и их движения. В дальнейшем в физике было установлено, что каждое действие передается в пространстве с конечной скоростью и хотя скорость распространения гравитационного  [c.105]

Научное творчество Гука охватывает многие разделы естествознания. Изучая давление воздуха, разработал теорию капиллярности и поверхностного натяжения жидкости. Занимался теорией планетарных движений, высказал идею закона всемирного тяготения, предвосхитив чтим во многих чертах небесную механику И. Ньютона. В 1678 г. открыл закон пропорциональности между силой, приложенной к упругому телу, и его деформацией. Это линейное соотношение между силой и деформацией известно как закон Гука — фундаментальный закон, на котором получила свое дальнейшее развитие наука о сопротивлении материалов.  [c.195]


Механика опирается на небольшое число основных законов, которые невозможно вывести непосредственно и к которым пришли длинным путем индукций. Полученные из них следствия подтверждаются наблюдениями. Первая идея этих законов принадлежит Галилею, который при исследовании законов падения тел (наклонная плоскость, маятник, параболическое движение) ввел понятия инерции, ускорения, сложения движений. Гюйгенс был продолжателем Галилея в теории движения точки. Он же первый изучал движение материальной системы. Наконец, Ньютон расширил область механики открытием закона всемирного тяготения.  [c.86]

Предыдущее вычисление в несколько другой форме было проделано Ньютоном и дало первую бесспорную проверку его теории всемирного тяготения, независимо от закона Кеплера.  [c.196]

Три закона Кеплера. За шестьдесят лет до опубликования Ньютоном закона тяготения Кеплер опубликовал свои три знаменитые закона движения планет. Эти законы были выведены не из каких-либо теорий, а были открыты как результат изучения совокупности наблюдений.  [c.207]

О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]

То же самое происходит и с другими законами. Например, закон всемирного тяготения Ньютона был дополнен следствиями, вытекавшими из теории относительности, которые позволили объяснить новые факты, наблюдаемые астрономами.  [c.110]

В ньютоновой теории гравитации М. служит источ-нико.м силы всемирного тяготения, притягивающей все тела друг к другу. Сила Fg, с к-рой тело с массой гщ притягивает тело с массой т , определяется законом тяготения Ньютона  [c.51]

Одной из трудностей, которые должна была преодолеть механика Ньютона, была проблема фигуры Земли. Не меньшие трудности возникали при изучении движения тел Солнечной системы и прежде всего Луны. Основанные на законе тяготения расчеты Клеро (1713—1765) и Даламбера, произведенные в 1745 г., дали для апогея лунной орбиты период обращения в 18 лет, величину, вдвое превосходившую данные наблюдений. Многие ученые полагали, что закон тяготения Ньютона нуждается в поправке так думали, в частности, Клеро и Эйлер. Некоторое время спустя, однако, Клеро пришел к заключению, что причиной расхождения теории с наблюдениями является не ошибочность закона Ньютона, а недостаточная точность применявшегося метода вычислений, при которых ограничивались первым приближением. Второе приближение уже давало результаты, согласные с наблюденными. В 1749 г. Клеро сообщил об этом Эйлеру. Для окончательного решения вопроса Эйлер, в то время живший в Берлине, рекомендовал Петербургской академии паук объявить конкурс на тему Согласуются или же нет все неравенства, наблюдаемые в движении Луны, с теорией Ньютона Предложение Эйлера было принято, и он вошел в состав жюри. В 1751 г. премия, на основании отзыва Эйлера, вполне убежденного вычислениями Клеро, была присуждена этому французскому ученому. Его Теория Луны, выведенная из одного только принципа притяжения, обратно пропорционального квадратам расстояний была издана на французском языке Петербургской академией наук (1752).  [c.189]

Гюйгенс представлял себе, что сферическая фигура Солнца могла образоваться таким же путем, каким образовалась сферическая фигура Земли. Однако он при этом не простирал действия тяжести на такие расстояния, как от Солнца к планетам и от Земли к Луне. Гюйгенс указывал, что этот важный шаг он не проделал потому, что его ум пленили вихри Декарта. Издатели шестнадцатого тома собрания сочинений Гюйгенса приводят его замечание на одной рукописи. Гюйгенс удивлялся, что Ньютон потратил столь много труда для доказательства многих теорем и даже целой теории о движении небесных тел, исходя из маловероятной и смелой гипотезы о протяжении частиц силой, обратно пропорциональной квадрату расстояния. Это замечание не противоречит тому, что Гюйгенс отметил великие заслуги Ньютона в установлении закона всемирного тяготения. Видя теперь,— пишет Гюйгенс,— благодаря доказательствам г. Ньютона, что если принять такое тяготение к Солнцу уменьшающимся по сказанному закону, то оно окажется так уравновешивающим центробежные силы планет, что произведет эллиптическое движение, угаданное Кеплером и оправданное наблюдениями, не могу сомневаться, что гипотезы, допущенные относительно тяжести, и основанная на них система г. Ньютона верны. Это тем более вероятно, что в них находим разрешение трудностей, представлявшихся в системе вихрей Декарта  [c.361]


Изучая движение материальных тел под действием сил, можно выделить весьма важный класс задач динамики, характерных тем, что некоторые из действующих на объект сил могут быть запрограммированы и реализованы в процессе движения человеком-пилотом (или автопилотом). Часть сил, приложенных к движущемуся объекту, конечно, определена (детерминирована) природой, а часть может изменяться в широких пределах по некоторым законам, заложенным в конструкцию летательного аппарата. Так, при изучении движения ракеты в поле тяготения Земли гравитационная сила вполне детерминирована (она, в первом приближении, подчиняется закону тяготения Ньютона), а реактивная сила может изменяться и регулироваться как по величине, так и по направлению. Каждому закону регулирования реактивной силы будет соответствовать некоторый закон движения ракеты. В современной ракетодинамике и динамике самолета такие задачи часто на> зывают задачами с управляющими (или свободными) функциями. Если управляющие функции все заданы и, следовательно, сделаны определенными все действующие силы, тогда мы будем иметь дело с обычной задачей теоретической механики найти закон движения объекта, если действующие на него силы неизвестны. Но выбор (задание) свободных функций можно подчинить некоторым, достаточно общим и широким, условиям оптимальности (экстремальности) и производить определение динамических характеристик для этих классов оптимальных движений. Метод проб или сравнений, лежащий в основе классических вариационных принципов, применим и здесь, но варьируется выбор управляющих функций, а не траекторий в пространстве конфигураций. Задачи такого рода имеют большое практическое значение в динамике полета ракет и самолетов, а также в теории автоматического регулирования-  [c.14]

Второе из следствий общей теории относительности, которое находится в удовлетворительном согласии с наблюдениями, касается движения орбиты планеты Меркурий. По законам классической механики планеты должны двигаться по эллиптическим орбитам, которые покоятся в коперниковой системе отсчета. Однако уже специальная теория относительности вводит поправку в эти законы. Как показано в конце 75, вследствие зависимости массы от скорости орбиты планет дол жны поворачиваться в том же направлении, в котором планета движется вокруг Солнца. Но исходя из обгцей теории относигельпости, необходимо ввести поправку и в закон тяготения (заменить теорию тяготения Ньютона теорией тяготения Эйнштейна). Те отклонения в характере движения планешых орбит, которые должны наблюдаться при замене теории тяготения Ньютона теорией тяготения Эйии]тейна, качественно оказываются такими же, как отклонения, получающиеся при учете зависимости массы от скорости, но количественно эти отклонения больше. В то время как учет зависимости массы от скорости дает угловую скорость вращения орбиты Меркурия около 7" в столетие, замена теории тяготения Ньютона теорией тяготения Эйнштейна приводит к увеличению скорости вращения орбиты Меркурия до 45 в столетие. Приблизительно такие же результаты дают наблюдения. Все же точность этих наблюдений не столь высока, чтобы можно было считать, что OHI надежно подтверждают общую теорию относительности. Но во всяком случае можно считать, что эти результаты находятся в удовлетворительном согласии с выводами общей теории относительности.  [c.386]

Изобретение Г-интегрирования позволяет любому студенту легко и единообразно выводить подобные основополагающие формулы, связывающие силовые и энергетические характеристики сингулярности любого физического поля с интенсивностью этой сингулярности, описываемой некоторым множителем в сингулярном решении. Таким путем из соответствующих инвариантных Г-интегралов можно получить (соответствующие вычисления были проведены в [1 —12]) все известные физические законы о классических взаимодействиях закон Ньютона взаимодействия двух точечных масс — в теории тяготения законы Кулона, Био — Савара, Фарадея — в теории электромагнетизма формулу Жуковского — Чаплыгина и формулы для сил, действующих на источники, впхревые линии и кольца, — в гидродинамике идеальной жидкости формулу Стокса — в гидродинамике вязкой жидкости формулу Пича — Келера — в теории дислокаций формулу Ирвина — в линейной механике разрушения формулу Эшелби — в теории точечных включений и др. Таким же путем для новых типов сингулярностей, или новых физических полей, или новых комбинаций известных физических полей можно получать новые закономерности.  [c.360]

Важнейшими научными проблемами XVIII в. были задачи небесной механики, теоретическое решение которых могло быть подвергнуто астрономической проверке. Это был строгий экзамен теоретических основ механики, а их решение всегда было связано с использованием одного из важнейших достижений Пачал Пьютона — закона всемирного тяготения. Ньютоновская теория движения Луны, по мнению Клеро, противоречила наблюдениям и это побудило его, Даламбера и Эйлера основательно заняться этой проблемой. В 1743 г. Клеро опубликовал в Мемуарах свою первую работу Об орбите Луны в системе Ньютона , получившую продолжение в 1745 г. под заголовком О системе мира по принципам всемирного тяготения .  [c.256]

Ньютона. ( Рассуждения о законе притяжения , [153]). Заканчивается том 1745 г. дискуссией между Клеро и Бюффоном по теории всемирного тяготения и теории движения Луны, в которой каждый из авторов настаивает на своем мнении. Но независимо от мнений, эта последовательность утверждений, возражений, математических выкладок и разъяснений привлекла к публикациям Клеро, Даламбера и Бюффо-на пристальное внимание многих европейских ученых и способствовала бурному развитию небесной механики, триумфально продолженному Лапласом.  [c.257]


Предположим, что шар является однородным или, в более общем случае, что плотность в любой его точке есть функция лишь расстояния от центра шара. Закон тяготения Ньютона применим к частицам. Солнце, планеты и спутники не являются частицами в нью-тонианском смысле с массами, сконцентрированными в точках, а являются огромными сферическими, или близкими к сферическим, телами. Во многих задачах достаточно рассматривать эти тела как строго сферические. Ньютон доказал замечательную теорему о том,  [c.15]

В заключение несколько слов о природе сил инерции. В ньютоновской механике появление сил инерции не только не находит объяснения, но и выглядит парадоксальным, на что было указано Э. Махом. В самом деле, из общих соображений во всех СО явления должны протекать одинаково, так как не видно причин, по которьш одни СО (инерциальные) преимущественны - в них вьтолняется второй закон Ньютона, в то время как в других (неинерциальных) второй закон Ньютона усложняется появлением сил инерции и, соответственно, механические явления протекают иначе. Причина неравноправия инерциальных и неинерциальных СО была вскрьгга Эйнштейном, который понял, что одинаковость проявления сил инерции и тяготения не случайна, а свидегельстаует об их единой природе. В созданной им теории тяготения - общей теории относительности - гравитационное поле и силы инерции обусловлены искривленностью (неэвклидовым характером) пространственно-временного континуума.  [c.105]

Н. Коперника (16 в.) и открытие нем. астрономом И. Кеплером законов движения планет (нач. 17 в.). Основоположником динамики явл. итал. учёный Г. Галилей, к-рый дал первое верное решение задачи о движении тела под действием силы (закон равноускоренного падения) его исследования привели к открытию закона инерции и принципа относительности классич. М. им же положено начало теории колебаний (открытие изохронности малых колебаний маятника) и науке о сопротивлении материалов (исследование прочности балок). Важные для дальнейшего развития М. исследования движения точки по окружности, колебаний физ. маятника и законов упругого удара тел принадлежат голл. учёному X. Гюйгенсу. Создание основ классич. М. завершается трудами И. Ньютона, сформулировавшего осн. законы М. (1687) и открывшего закон всемирного тяготения. В 17 в. были установлены и два исходных положения М. сплошной среды закон вязкого трения в жидкостях и газах (Ньютон) и закон, выражающий зависимость между напряжениями и деформациями в упругом теле (англ. учёный Р. Гук).  [c.415]

Среди деятелей эпохи Возрождения особенно выделяется гениальный художник, геометр и инженер, итальянец Леонардо да Винчи (1452—1519), которому принадлежат исследования в области теории механизмов, трения в машинах и движения по наклонной плоскости. Кроме того, он занимался перспективой, теорией теней и строил модели летательных машин. Им построен также эллиптический токарный станок, носящий до сих пор его имя. Другой замечательный деятель этой эпохи, великий польский ученый Николай Коперник (1473—1543) создал свою гелиоцентрическую картину мира, которая, сменив геоцентрическую картину Птолемея, произвела большой переворот в научном мировоззрении и оказала огромное влияние на все последующее развитие естествознания. Благодаря работам Коперника и многочисленным наблюдениям датского астронома Тихо-Браге Иоганн Кеплер (1571 —1630) получил свои три знаменитых закона движения планет, послуживших Ньютону основанием для его закона всемирного тяготения ). Далее следует упомянуть о работах голландца Стевина (1548—1620), который исследовал законы равновесия тел на наклонной плоскости и в результате пришел к выводу основных законов статики.  [c.11]

Мы видим, что (масса тела, которая в нерелятивистской механике выступала как мера инертности (во втором законе Ньютона) или как мера гравитационного действия (в законе всемирного тяготения), теперь выступает в новой функции — как мера энергосодержания тела. Даже покоящееся тело, сог.дасно теории относительности, обладает запасом энергии — энергией покоя.  [c.219]

Наряду с понятием о массе как мере инертности — инертной массе — в механике приходится иметь дело также с тяготеющей массой , входящей в формулировку закона всемирного тяготения. Как показали многочисленные опыты и в первую очередь оиыты самого Ньютона, численные величины инертной и тяготеющей массы для одного и того же тела равны между собой. Этот принцип эквивалентности инертной и тяготеюш ей масс был в дальнейшем обобщен и па область движений, требующих для своего рассмотрения применения специальной теории относительности (см. гл. XXXI).  [c.16]

Космология по Ньютону . Выше уже отмечалось, что силы тяготения определяют движения планет и Галактик, эволюцию Вселенной в целом. Нельзя ли, используя законы Ньютона, попытаться построить хотя бы приближенную модель дш1амики Вселенной Это представляется возможным, но на это впервые указали английские астрофизики Э. Милн и В. Маккри всего лишь в 1934 г., т. е. спустя почти 250 лет после Ньютона. Парадоксально, но модель динамики Вселенной могла быть построена еще Ньютоном. Вероятнее всего, это не было сделано в силу прочно укоренившегося еще со времен Древней Греции представления о неизменности, стационарности Вселенной. О динамике Вселенной долгое время никто даже и не догадывался. Поэтому излагаемая ниже космология по Ньютону появилась уже после создания А. Эйнштейном в 1917 г. общей теории относительности, после теоретического предсказания А. Фридманом в 1922 г. расширения Вселенной, после экспериментального подтверждения этого явления в 1929 г. американским астрономом Э. Хабблом. Ньютоновская космологическая модель дает первый набросок эволюции Вселенной, раскрывает новые грани в раскрытии физической сущности гравитационной постоянной.  [c.58]

Гравитация и относительность. Теперь можно снова вернуться к рассмотрению проблем, связанных с гравитационной постоянной. Напомним, что начатое в I исследование осталось неоконченным— теория тяготения Ньютона не могла вскрыть причины явления. Расчеты по закону всемирного тяготения Ц) не согласовывались с результата] ш наблюдений вращения перигелия Меркурия. Создателю пeLдаaльнoй теории относительности А. Эйнштейну, вьшвившел1у фундаментальное значение скорости света как максимально возможной скорости распространения любых взаимодействий в природе, был ясен и другой принципиальный недостаток ньютоновской теории. Ведь в ней скорость распространения гравитационного взаимодействия считалась бесконеч-  [c.139]

Использование в пространстве Минковского прямоугольных координат обусловлено тем, что в спещ1альыой теории относительности рассматривались только инерниальные системы, т. е. системы, движущиеся друг относительно друга равномерно и прямолинейно. На такие системы по первому закону Ньютона не действуют внешние силы. Однако гакое нлоское четырехмерное пространство является физической абстракцией, так как хорошо известно, что существует одна сила, которая действует везде и всегда,— это сила тяготения. От нее нельзя заслониться никакими экранами, как, например, это можно сделать в случае электромагнитного взаимодействия. Под действием силы тяготения все тела и системы отсчета движутся с ускорением. Напрашивается важный для понимания сущности гравитации вывод инер-циальные системы принципиально непригодны дпя описания тяготения. Для описания действия гравитационных сил надо отказаться от столь привычной вам евклидовой геометрии. Тяготение требует использования нового математического аппарата. Такой аппарат был уже создан. Громадный вклад в разработку 140  [c.140]


Первостепенной задачей теории является нахождение единой причины существующих частных явлений или законов и уменьшение числа независимых исходных положений. Этот процесс давно уже идет в физике. Достаточно вспомнить объединение земного и космического тяготений в законе всемирного тяготения Ньютона, объединение электричества и магнетизма в электродинамике Максвелла, установление связи между микро- и макропараметрами систем Больцманом, связь геометрии физического пространства с теорией гравитации в общей теории относительности Эйнштейна и т. п. Удивительнейший пример единства природы открывает связь явлений, происходящих в микромире и Вселенной, о чем идет речь в этой части книги. Многие свойства Вселенной определяются характеристиками фундаментальных взаимодействий, происходящих в микромире. И, напротив, происходящие во Вселенной процессы дают много для понимания свойств элементарных частиц и необходимы для построения правильной теории. Но все же впереди очень и очень шого работы.  [c.200]

Представим себе, что мы не знаем ни уравнений Ньютона, ни даже (что еще более сблизит эту ситуацию с той, которая имеет место в теории элементарных частиц) дифференциального и интегрального исчисления, но знаем законы сохранения энергии, импульса, момента и центра инерции. Ясно, что при таком состоянии теории тяготения в работах по небесной механике законы сохранения занимали бы главенствуюш,ее положение.  [c.281]

Это же относится и к полям тяготения (подчиняющимся, как известно, закону Ньютона) в общем случае, а равно и к кулоновым полям электростатики и магнитостатики, которые по своему характеру вполне аналогичны гравитационным полям. Вообще безвихревые поля (называемые также потенциальными полями) занимают исключительное место в природе. В общей теории, излагаемой в гл. VI и VIII, они будут играть особую роль.  [c.135]

Еще одна особенность современной науки, на которой я хотел бы остановиться,— это сокращение времени жизни фундаментальных представлений о природе и ее законах. Аристотелева теория тяготения, к примеру, просуществовала в науке почти две тысячи лет, а идеи Ньютона были подвергнуты ревизии уже через два столетия неделимый атом Дальтона жил в науке почти сто лет, а атомная модель Резерфорда смогла выдержать натиск новых представлений лишь десятилетие.  [c.108]

ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (ОТО) — современная физ. теория нространства, времени и тяготения окончательно сформулирована А. Эйнштейном в 1916. В основе ОТО лежит эксперим. факт равенства инертной массы (входящей во 2-й закон Ньютона) и гравитац. массы (входящей в закон тяготения) для любого тела, приводящий к эквивалентности принципу. Равенство инертной и гравитац. масс проявляется в том, что движение тела в поле тяготения ее зависит от его массы. Это позволяет ОТО трактовать тяготение как искривление пространственно-временного континуума. Это искривление пространства-времени оиисывается метрикой, определяемой из ур-ний теории тяготения (см. Тяготение). Пространство Минковского, рассматриваемое в частной (специальной) теории относительности (т.е. в отсутствие тяготеющих тел), обладает высокой степенью симметрии, описываемой группой Пуанкаре. Эта группа в соответствии с принципом относительности порождает изоморфные последовательности событий. В пространстве, где есть поле тяготения, симметрия полностью исчезает, поэтому в нём не выполняется принцип относительности (т. е. нет сохранения относительной или внутренней структуры цепочек событий при действии группы симметрии). Назв. О. т. о. , принадлежащее Эйнштейну, является поэтому неадекватным и постепенно исчезает из литературы, заменяясь на теорию тяготения . и. ю. Кобзарев.  [c.392]

Теория тяготения Ньютона в нерелятивистской классической знке Закон тяготения Ньютона гласит, что две материальные точки с массами и /Ид, находящиеся на расстоянии г друг от друга, притягиваются по направлению друг к другу каждая с силой  [c.188]

Ньютонова теория Т. и ньютонова механика явились величайшим достижением естествознания. Они позволяют описать с больпюй точностью обширный круг явлений, в т. ч. движение естеств. и искусств, тел в Солнечной системе, движения в др. системах небесных тел в двойных звёздах, в звёздных скоплениях, в галактиках. На основе теории тяготения Ньютона было предсказано существование планеты Нептун и спутника Сириуса и сделаны многие др. предсказания, впоследствии блестяще подтвердившиеся. В совр. астрономии закон тяготения Ньютона является фундаментом, на основе к-рого вычисляются движения и строение небесных тел, их массы, эволюция. Точное определение гравитац. поля Земли позволяет установить распределение масс под её поверхностью (гравиметрич, разведка) и, следовательно, непосредственно репшть важные прикладные задачи. Однако в нек-рых случаях, когда поля Т. становятся достаточно сильными, а скорости движения тел в этих полях не малы по сравнению со ско-ростью света, Т. уже не может быть описано законом Ньютона.  [c.188]

Конечно, Герц не имел, как имели мы здесь, уже готового предположения о распределении давления по поверхности плитки, при знании которого ему оставалось бы только доказать правильность решения. Он по этому вопросу не делал никаких предварительных предположений и нашел закон распределения давлений лишь в результате своих исследований. Герц пришел к своему результату, опираясь на то, что решение основных уравнений упругого равновесия может быть получено при помощи теории потенциала притягивающих или отталкивающих масс. Если представить себе, что между обоими телами помещен трехосный эллипсоид равномерной плотности, у которого ось, идущая в направлении нормали касательной плоскости, в сравнении с осями, расположенными в площадке сжатия, бесконечно мала, то для сил притяжения масс этого эллипсоида, подчиняющихся закону тяготения Ньютона, можно вычислить потенциал в виде функции от координат ауфпункта ) и для такого потенциала уже давно была выведена готовая формула. Как можно показать, не только сами составляющие сил притяжения, вычисляемые по соответствующим формулам, но и функции, получаемые из них путем диференцирования или интегрирования по координатам, будут представлять решения основных уравнений теории упругости, и вся задача заключается лишь в том, чтобы составить из них такое решение, которое удовлетворяло бы одновременно всем граничным условиям, относящимся к напряжениям и деформациям. Это и удалось сделать Герцу. Кто захотел бы ознакомиться с теорией сжатия упругих тел по оригинальным работам Герца, тот должен иметь соответствующие предварительные сведения из теории потенциала.  [c.230]

Закон площадей — прообраз и частный случай общего закона моментов количеств движения — был установлен впервые Кеплером для движения планет. Кеплер показал, что его второй закон справедлив как для теории Коперника, так и для теорий Птолемея и Тихо Браге. Возможно, что это обстоятельство побудило Ньютона к дальнейшему обобщению. В Началах он доказал и то, что закон площадей для планетных орбит является следствием закона тяготения (планет к Солнцу) в принятой Ньютоном форме, и то, что этот закон справедлив при движении тела под действием любой силы постоянного направления, проходящей через неподвижный центр. Но переход к более общей закономерности не был напрашивающимся, так как момент силы относительно этого центра тождественно равен нулю и в случае, который рассматривал Ньютон. Этот переход был облегчен развитием статики — оперирование моментами (сил) относительно ося или точки как алгебраическими величинами стало там обычным благодаря трудам Вариньона. Все же новое обобщение закона площадей было получено только в работах 40-х годов XVIII в. Все эти работы связаны с задачами о движении тел на движущихся поверхностях. Подобные задачи ставились и в земной, и в небесной механике. Иоганн и Даниил Бернулли начали изучение таких вопросов для случая, когда движущаяся поверхность — наклонная плоскость. Клеро немало содействовал успеху в этой тогда новой области механики своими результатами по теории относительного движения. Вслед за ним Эйлер в большой работе О движениях тел по подвижным поверхностям от-  [c.125]

Прежде всего, надо принять во внимание, что само представление о взаимном тяготении тел имело уже давнюю историю и было достаточно распространенным. В частности, об этом писал Кеплер (см. гл. V). Высказывалось и предположение о том, что тяготение между телами обратно пропорционально квадрату расстояния (Борелли в 1665 г., коллеги Ньютона по Королевскому обществу Гук, Врен, Галлей в 70-х и 80-х годах XVII в.). Неудивительно, что сам Ньютон еще в 60-е годы подверг анализу некоторые следствия из такого допущения (к которому, впрочем, он мог прийти вполне самостоятельно) и к которому приводило сопоставление третьего закона Кеплера и выражения для центробежной силы. В отличие от названных выше его современников, Ньютон, благодаря своему математическому гению, был в состоянии построить на этой основе обширную теорию. Он не выступил с нею в 60-е годы вряд ли лишь потому, что у него не совпали данные об ускоряющей силе, действующей со стороны Земли на Луну, с данными об ускоряющей силе на поверхности Земли. В отличие от всех своих предшественников и современников, Ньютон смог удивительно просто доказать, что материальная точка внутри бесконечно тонкого сферического слоя, притягивающего эту точку по закону (а), находится в равновесии в любом возможном для нее положении (теорема 70 Начал ) он доказал, что такой сферический слой притягивает частицу, расположенную вне слоя, с силой, обратно пропорциональной ее расстоянию от центра сферы (теорема 71) он обобщил эти результаты на случай взаимодействия (однородной) сферы и частицы, сферы и сферы  [c.148]


Центральная проблема небесной механики — проблема трех тел — в XVIII в. была уже или предметом, или стимулом многих исследований, без которых нельзя себе представить историю общей механики Это относится к значительной части тех работ, которые рассмотрены в первых пунктах настоящей главы. Связь исследований по общей и небесной механике становится совершенно явной и систематической к середине XVIII в., когда стала общепризнанной безнадежность построения теории орбит (планет и комет) на основе декартовой теории вихрей, и получили достаточные подтверждения расчеты, основанные на законе тяготения Ньютона. Наибольшее значение имели в то время исследования по теории движения Луны как для небесной механики, так и для навигационной практики. Тут надо отметить работы Кле-ро и Эйлера, в частности премированное в 1751 г. Петербургской академией наук исследование Клеро, само название которого программно Теория движения Луны, выведенная единственно из начала притяжения, обратно пропорционального квадратам расстояния . Оценивая это исследование, Эйлер писал в отзыве, составленном но поручению Петербургской академии, что эту диссертацию не только нужно считать достойной высшей награды, но через нее и слава знаменитейшей Академии возрастает не незначительно, так как, предложив вопросы столь трудные, она привела к ясности положения самые скрытые Велико историческое значение и другой работы Клеро, тоже получившей в 1762 г. премию Петербургской академии наук. В ней было рассчитано время прохождения кометы Галлея .  [c.153]

В своем знаменитом сочинении Математические начала естественной философии (1687), переведенном на русский язык акад. А. Н. Крыловым, Ньютон установил основные законы классической механики и, исходя из этих законов, дал систематическое изложение динамики. Кроме установления общих законов динамики, Ньютону принадлежит решение многих новых математических и механических задач, создание теории движения тела в сопротивляющейся среде и, паконец, открытие закона всемирного тяготения, послужившего основой для дальнейшего блестящего развития небесной механики.  [c.19]


Смотреть страницы где упоминается термин Ньютона тяготения закон теория : [c.749]    [c.245]    [c.46]    [c.143]    [c.387]    [c.127]    [c.149]    [c.150]    [c.272]    [c.392]   
Физические основы механики (1971) -- [ c.384 ]



ПОИСК



Закон Ньютона,

Закон тяготения

Закон тяготения Ньютона

Ньютон

Ньютона закон (см. Закон Ньютона)

Ньютона теория

Ньютона) тяготения Ньютона

Тяготение



© 2025 Mash-xxl.info Реклама на сайте