Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютона теория

Рис. 14. Нормальная сила на плоской пластине в зависимости от угла атаки а. Для получения безразмерного коэффициента нормальная сила на единицу ширины пластины разделена па рЛ Ь. р — плотность жидкости, II — скорость относительного потока, а — длина пластины. Кривые 1, 2 и 3 представляют соответственно теорию Ньютона, теорию Рэлея и современную теорию подъемной силы (циркуляции). Рис. 14. <a href="/info/7058">Нормальная сила</a> на <a href="/info/204179">плоской пластине</a> в зависимости от угла атаки а. Для получения <a href="/info/248972">безразмерного коэффициента</a> <a href="/info/7058">нормальная сила</a> на единицу ширины <a href="/info/204180">пластины разделена</a> па рЛ Ь. р — <a href="/info/19790">плотность жидкости</a>, II — <a href="/info/7976">скорость относительного</a> потока, а — длина пластины. Кривые 1, 2 и 3 представляют соответственно теорию Ньютона, теорию Рэлея и современную <a href="/info/108859">теорию подъемной силы</a> (циркуляции).

На примере этих двух теорий видно, что принцип относительности по содержанию своему должен иметь для всей физики весьма большое значение. В этом обстоятельстве кроется причина, почему именно электродинамика движущихся тел и привела в 1905 г. к созданию т. н. специальной теории относительности, заменяющей классич. принцип Галилея-Ньютона. Теория Герца в нек-рых своих выводах согласна с опытом (напр, вышеупомянутый опыт Майкельсона), в других  [c.177]

Необходимость обобщения закона тяготения Ньютона. Теория Ньютона предполагает мгновенное распространение Т. и уже поэтому не может быть согласована со спец. теорией относительности (см. Относительности теория)., утверждающей, что никакое вз-ствие не может распространяться со скоростью, превышающей скорость света в вакууме. Определим условия, ограничивающие применимость ньютоновской теории Т. Так как эта теория не согласуется со спец. теорией относительности, то её нельзя применять в тех случаях, когда гравитац. поля настолько сильны, что разгоняют движущиеся в них тела до скоростей порядка скорости света с. Скорость, до к-рой разгоняется тело, свободно падающее из бесконечности (предполагается, что там оно имело пренебрежимо малую скорость) до нек-рой точки, равна по порядку величины квадратному корню из модуля гравитац. потенциала ф в этой точке (предполагается, что на бесконечности ф=0). Т. о., теорию Ньютона можно применять только в том случае, если  [c.772]

В свете теории относительности классическая механика Галилея— Ньютона приобрела характер ее частного случая и сохраняет свое значение и в настоящее время, являясь научно-теоретической базой большинства отраслей техники. На основе законов Галилея— Ньютона в дальнейшем доказывались теоремы и устанавливались принципы механики, составляющие содержание современного курса теоретической механики.  [c.5]

Но равенство (13) выражает второй закон Ньютона для материальной точки, помещенной в центре инерции и движущейся вместе с ним, если масса этой точки равна М и если к ней приложена сила / внеш- Отсюда следует, что теорему сб изменении количества движения можно сформулировать так  [c.71]

Несмотря на это, классическая механика Галилея — Ньютона продолжает сохранять свою огромную ценность как мош,ное орудие научного исследования различных вопросов естествознания и техники, и ее законы дают при этом вполне достаточную для практики точность. Все разнообразные технические сооружения и все современные расчеты, связанные с космическими полетами, построены на основании законов классической механики и, как показывает опыт, с успехом выполняют свое назначение. Поправки и изменения, вносимые в законы классической механики теорией относительности и квантовой механикой, исчезающе малы в обычных условиях и становятся заметными только при больших скоростях, близких к скорости света, и для тел, размеры которых имеют порядок размеров атома. Поэтому классическая механика Галилея —Ньютона никогда не потеряет своего научного значения и практической ценности.  [c.18]


Христиан Гюйгенс (1629—1695) продолжил работы Галилея, Замечательны работы Гюйгенса по математике, астрономии и физике. В области механики он дал ряд теорем о центробежной силе, по теории удара и полную теорию физического маятника, которую он разработал в процессе изобретения им часов. Недаром Ньютон, ссылаясь на работы Гюйгенса, обычно называл его величайший Гюйгенс .  [c.11]

Исаак Ньютон (1642—1727) по праву считается основателем классической механики. Он Создал стройную систему механики, четко сформулировал ее аксиомы, ввел понятие массы и решил целый ряд проблем механики. Замечательно, что большинство открытий Ньютон сделал в течение двух лет, когда он был еще совсем юным. Об этих годах своей жизни Ньютон пишет, что в начале 1665 г. он открыл свой бином, в мае — метод касательных, в ноябре — прямой метод флюксий (дифференциальное исчисление), в январе 1666 г. — теорию цветов, в мае приступил к обратному методу флюксий (интегральное исчисление), в августе открыл закон всемирного тяготения.  [c.11]

Выведем закон преломления, исходя из теории Ньютона. Пусть свет падает на границу раздела двух сред с показателями преломления Пх н 2 соответственно, причем скорости света в вакууме к скорости света в данной среде будет называться показателем преломления данной среды). Разложим скорость света в 1-й среде на горизонтальную и вертикальную составляющие Du--и Vi2- Согласно Ньютону, горизонтальные составляющие скоростей остаются неизменными, т. е. Иц — u v, в то время как V2->Vi, (при условии fii [c.4]

Ньютон был противником волновой теории. Его величайшие открытия в области механики принесли ему славу, и этот факт сыграл  [c.6]

Кратко рассмотрим основные положения свободных (баллистических) полетов космических летательных аппаратов. Теория свободных космических полетов основана на законах Ньютона — Кеплера из области небесной механики. Согласно этим законам, каждая материальная точка, находящаяся под действием силы притяжения со стороны одного только центра, имеет определенное движение. Это движение зависит только от начальных условий, т. е. от того, какое положение занимает точка в начальный момент времени, когда она находится под действием только силы притяжения, и от того, какую она имеет скорость в этот мо.мент времени. На основании этих положений движется центр масс каждого космического летательного аппарата.  [c.499]

Все положения динамики получают из ее аксиом, используя законы логики и вводя удобные для применения понятия. В основу классической механики положены аксиомы Ньютона, которые были даны в его труде Математические начала натуральной философии , опубликованные впервые в 1687 г. Классическую механику часто называют механикой Ньютона в отличие, например, от механики теории относительности.  [c.224]

Коперник явился создателем гелиоцентрической теории движения планет вокруг Солнца, в которой Земле было отведено надлежащее место. Кеплер на основании обработки наблюдений движения планеты Марс установил законы движения планет. Эти законы впоследствии позволили Ньютону обосновать закон всемирного тяготения.  [c.21]

И. Ньютон полагал при этом, что свойства пространства полностью определяются системой аксиом и теорем геометрии Евклида. Абстрактные представления Ньютона о пространстве и времени были органически связаны с основными законами классической  [c.66]

Понятие об абсолютно неподвижном пространстве предполагает существование абсолютно неподвижного тела, с которым можно физически связывать ту систему координат, к которой следует относить положения элементов вселенной. Отметим, что сам Ньютон не был убежден в том, что такое тело существует. Хотя в эпоху Ньютона собственное движение Солнца не было известно, можно было допустить, что гелиоцентрическая система декартовых координат с началом в центре Солнца и осями, направленными на три так называемых неподвижных звезды, все же является подвижной. Вопрос о существовании абсолютно неподвижной системы координат рассматривался довольно продолжительное время, пока это рассмотрение не привело к отрицанию существования такой системы. Эта точка зрения принадлежит современной механике, построенной на основе теории относительности. Само понятие абсолютно неподвижной координатной системы лишено теперь всякого физического смысла.  [c.67]


Второе из следствий общей теории относительности, которое находится в удовлетворительном согласии с наблюдениями, касается движения орбиты планеты Меркурий. По законам классической механики планеты должны двигаться по эллиптическим орбитам, которые покоятся в коперниковой системе отсчета. Однако уже специальная теория относительности вводит поправку в эти законы. Как показано в конце 75, вследствие зависимости массы от скорости орбиты планет дол жны поворачиваться в том же направлении, в котором планета движется вокруг Солнца. Но исходя из обгцей теории относигельпости, необходимо ввести поправку и в закон тяготения (заменить теорию тяготения Ньютона теорией тяготения Эйнштейна). Те отклонения в характере движения планешых орбит, которые должны наблюдаться при замене теории тяготения Ньютона теорией тяготения Эйии]тейна, качественно оказываются такими же, как отклонения, получающиеся при учете зависимости массы от скорости, но количественно эти отклонения больше. В то время как учет зависимости массы от скорости дает угловую скорость вращения орбиты Меркурия около 7" в столетие, замена теории тяготения Ньютона теорией тяготения Эйнштейна приводит к увеличению скорости вращения орбиты Меркурия до 45 в столетие. Приблизительно такие же результаты дают наблюдения. Все же точность этих наблюдений не столь высока, чтобы можно было считать, что OHI надежно подтверждают общую теорию относительности. Но во всяком случае можно считать, что эти результаты находятся в удовлетворительном согласии с выводами общей теории относительности.  [c.386]

Теория удара Герца. Полученные в предыдущем параграфе результаты могут быть применены к задаче о. соударении двуд тел ). Обычная, данная Ньютоном террия удара делит тела на два класс идеально уцру<-гих и, неидеально упругих . В первом случае при ударе нет потери кинетической энергии. Во втором—при ударе энергия рассеивается. В действительности многие тела близки к идеально упругим в смысле Ньютона. Теория удара Герца не рассматривает рассеивании энергии она исходит из предположения, что сжатие в месте касания возникает постепенно и при обращении процесса, который его вызвал, лолностью исчезает. Местное сжатие рассматривается как статическое явление. Такая теория правильна только тогда, когда продолжительность удара во много раз больше, чем период наиболее медленных свободных колебаний обоих тел, вызванных давлением в рассматриваемом месте. Для продолжительности удара, удовлетворяющей этим требованиям. Герцем установлена формула для случаев, когда скорость соударения не слишком велика этот результат проверен на опыте ).  [c.209]

Методы решения задач механики, которые до сих пор рассматривались, основываются на уравнениях, вытекающих или непосредственно и.з законов Ньютона, или же из общих теорем, являющихся следствием этих законов. Однако этот путь не является единственным. Оказывается, что уравнейия движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Да.шмбера.  [c.344]

Вспомним теперь, что при выводе всех основных теорем механики в 2—4 этой главы мы опирались лишь на второй закон Ньютона. Следовательно, асе теоремы механики, сформулированные нами выиш, будут верны и в неинерциальных системах отсчета, если к силам, действуюш,им на точки системы, добавить перенскные и кориолисовы силы инерции. Если силы делятся на  [c.104]

До сих пор в основе всех наших рассуждений лежали некоторые исходные представления, играющие во всем последующем построении роль аксиом. Мы постулировали, в частности, второй закон Ньютона и при гыводе основ ых законов и теорем механики всегда исходили из него. В настоящей главе, выводя уравнения движения в форме, ковариантной по отношению к любым точечным преобразованиям координат, мы также положили в основу рассуждений второй закон Ньютона и в конечном результате придали ему форму уравнений Лагранжа. В этом смысле второй закон Ньютона оказывается эквивалентным утверждению о том, что движение может быть описано уравнениями (22), а движение в потенциальном поле — уравнениями (29), где L = T—К.  [c.164]

Понятие динамической системы возникло как обобщение понятия механической системы, движение которой описывается дифференциальными уравнениями Ньютона. В своем историческом развитии понятие динамической системы, как и всякое другое понятие, постепенно изменялось, наполняясь новым, более глубоким содержанием. Уже в книге Рейли по теории звука с единой точки зрения рассматриваются колебательные явления в механике, акустике и электрических системах. В настоящее время понятие динамической системы является весьма широким. Оно охватывает системы любой природы физической, химической, биологической, экономической и др., причем не только детерминированные системы, но и стохастические. Описание динамических систем также допускает большое разнообразие оно может осуществляться или при помощи дифференциальных уравнений, или такими средствами, как функции алгебры логики, графы, марковские цепи и т. д.  [c.8]

Среди деятелей эпохи Возрождения особенно выделяется гениальный художник, геометр и инженер, итальянец Леонардо да Винчи (1452—1519), которому принадлежат исследования в области теории механизмов, трения в машинах и движения по наклонной плоскости. Кроме того, он занимался перспективой, теорией теней и строил модели летательных машин. Им построен также эллиптический токарный станок, носящий до сих пор его имя. Другой замечательный деятель этой эпохи, великий польский ученый Николай Коперник (1473—1543) создал свою гелиоцентрическую картину мира, которая, сменив геоцентрическую картину Птолемея, произвела большой переворот в научном мировоззрении и оказала огромное влияние на все последующее развитие естествознания. Благодаря работам Коперника и многочисленным наблюдениям датского астронома Тихо-Браге Иоганн Кеплер (1571 —1630) получил свои три знаменитых закона движения планет, послуживших Ньютону основанием для его закона всемирного тяготения ). Далее следует упомянуть о работах голландца Стевина (1548—1620), который исследовал законы равновесия тел на наклонной плоскости и в результате пришел к выводу основных законов статики.  [c.11]


В начале XX века Альберт Эйнштейн (1879—1955) создал теорик> относительности, которая представляет собой после Ньютона следующий крупный шаг в развитии механики. Основанная на теории относительности релятивная механика вкладывает совершенно новое содержание в основные понятия механики о пространстве, времени, материи и в своих уравнениях учитывает взаимосвязь этих понятий классическая ньютоновская механика является ее частным случаем и в пределе, при малых скоростях и на больших расстояниях от масс, совпадает с релятивной. Кроме того, А. Эйнштейн, введя совершенно новое представление о пространстве, создал теорию тяготения — явления, ранее не поддавшегося объяснению.  [c.15]

Спустя несколько лет после создания Ньютоном корпускулярной теории известн1,1й ученый X. Гюйгенс, опираясь на аналогию оптических и акустических явлений, выдвинул волновую теорию света.  [c.4]

Таким образом, к началу XVIИ в. существовали два подхода к объяснению природы сиета корпускулярная теория Ньютона и волновая теория Гюйгенса. XVIII век стал веком борьбы этих двух теорий.  [c.6]

Теория Планка, хотя и противоречила духу классической физики, подтверждалась опытными фактами и смогла решить задачу теплового излучения абсолютно черных тел. Следует отметить, что квантовая теория Планка совершенно не нуждается в понятии эфирной среды . Таким образом, к началу XX в. наряду с электромагнитной теорией возродилась корпускулярная теория света, но, безусловно, отличЕ1ая от корпускулярной теории Ньютона.  [c.8]

Пусть накто не думает, что великое сознание Ньютона может быть ниспровергнуто теорией относительности или какой-нибудь теорией.  [c.3]

Идеальные связи представляют модель существующих в прпро-де связей. К ним относятся поверхности и кривые с пренебрежимо малым трением, ибо Nv в этом случае перпендикуляр1ю бГг, шарниры без трения, ибо силы реакции их проходят через ось шарнира, для которой 6fv = 0. В класс механических систем, с идеальными связями входит абсолютно твердое тело. Действительно, его произвольные точки а м Ь находятся на неизменном расстоянии, в результате действия внутренних сил, которые иредставляют реакции связей Na и Nft абсолютно твердого тела. Сумма работ этих сил равна нулю, ибо вводя виртуальные скорости, используя третий закон Ньютона и теорему Грасго([)а, можно записать  [c.53]

В теории удара физические свойства соударяющихся тел учитываются специальной гипотезой Ньютона, представляющей обработку и обобщение 01пытных данных. Эта гипотеза состоит в следующем. Пусть соударяющиеся абсолютно гладкие тела Ai и А2 во время удара соприкасаются друг с другом в точках i и С2. Тогда относительные нормальные скорости точки i по отношению к телу Лг и С2 по отношению к телу Л равны по величине и противоположны по знаку.  [c.130]

Теория удара в случае свободных и несвободных механических систем является хорошо изученным разделом теоретической механики. Закон или гипотеза Ньютона (91.41) в случае, когда не известен ударный импульс, позволяет решить вопрос о послеударных скоростях по заданным доударяым скоростям. Гипотеза Ньютона является неотъемлемым законом теории удара.  [c.131]

Движение материальных объектов всегда следует рассматривать относительно определенной системы отсчета. Оно совершается в пространстве с течением времени. В классической механике, в основу которой положены аксиомы Ньютона, пространство считается трехмер-ны.м, эвклидовым пространством, свойства которого не зависят от движущихся в нем материальных объектов. Положение точки в таком пространстве относительно какой-либо системы отсчета определяется тремя независимыми параметрами или координатами точки. В общей теории относительности свойства пространства зависят от находящихся в нем материальных объектов и их движения.  [c.223]

Эта теория принимает без изменения такие положения ньютоновской механики, как евклидовость пространства и закон инерции Галилея — Ньютона. Что же касается утверждения о неизменности размеров твердых тел и промежутков времени в разных системах отсчета, то Эйнштейн обратил внимание на то, что эти представления возникли в результате изучения движений тел с малыми скоростями, поэтому их экстраполяция в область больших скоростей ничем не оправдана, а следовательно незаконна. Только опыт может дать ответ на вопрос, каковы их истинные свойства. Это же относится к преобразованиям Галилея и к принципу дальнодействия.  [c.177]

Мы видим, что (масса тела, которая в нерелятивистской механике выступала как мера инертности (во втором законе Ньютона) или как мера гравитационного действия (в законе всемирного тяготения), теперь выступает в новой функции — как мера энергосодержания тела. Даже покоящееся тело, сог.дасно теории относительности, обладает запасом энергии — энергией покоя.  [c.219]

И. Ньютон в 1672 г. высказал предположение о корпускулярной природе света. Против корпускулярной теории света выступали соаременники Ньютона — Р. Гук и X. Гюйгенс, разработавшие волновую теорию света.  [c.262]

В первую очередь нас интересует дисперсия вещества, т.е. зависимость показателя преломления от длины волны проходящего света. Напомним, что в классической электромагнитной теории света предполагается, что л(1) = onst, однако еще Ньютон поставил опыт, наглядно иллюстрирующий зависимость п(к). В  [c.135]

Электромагнитная теория света, ра.чвитая Максвеллом и его последователями, — это стройная сисге.ма, основанная на представлениях и законах классической физики. Она объединяет классическую механику и )л( ктродннамыку, шслючаюи1,ую в себя теорию оптических и электрических процессов. Как известно, механика зиждется на законах Ньютона, а основой электродинамики служат уравнения Максвелла. При исследо-  [c.363]

Возрождение на новой основе корпускулярной теории света и то, что она не противостоит волновой теории, а дополняет ее, представляется совершенно естественным. В XX в. спор, который вели в свое время великие физики Ньютон и Гюйгенс, выгляде. бы совершенно нелепым. Хорошо известно, что наличие этих двух внешне противоречивь х теорий отражает сложную ду1иьную природу света, характерную для всей окружающей нас материи.  [c.461]

Классическая механика Ньютона развивалась на протяжении XVIII — XIX вв., а в XX в. этот процесс развития привел к современной теории относительности, в которой законы классической механики рассматриваются как асимптотические приближения, вытекающие из более общих закономерностей. Однако классическая механика сохраняет огромное практическое значение и теперь, так как отклонения от законов Ньютона, найденные Альбертом Эйнштейном, количественно невелики, если движение тела происходит со скоростью, значительно меньшей, чем скорость света в пустоте, и когда вблизи движущегося тела нет огромных скоплений материи, которые, например, сравнимы с количеством материи Солнца. В современной технике преимущественно применяется классическая механика, за исключением тех случаев, когда, например, требуется исследовать движение элементарных частиц электронов и др., которые движутся со скоростями порядка скорости света в пустоте. По-видимому, аналогичные задачи могут возникнуть также при развитии космонавтики.  [c.21]


Смотреть страницы где упоминается термин Ньютона теория : [c.121]    [c.507]    [c.235]    [c.276]    [c.73]    [c.15]    [c.4]    [c.6]    [c.132]    [c.277]    [c.375]   
Численные методы газовой динамики (1987) -- [ c.62 ]



ПОИСК



Ньютон

Ньютона сравнение с теорией циркуляции

Ньютона теорема в теории удара

Ньютона тяготения закон теория

Область применимости теории Ньютона

Подъемная теория Ньютона

Применение теории к ньютоновой механике

Релятивистская формулировка ньютоновой скалярной теории гравитации

Теория Ньютона ударная

Теория годографов в ньютоновой механике (Сэмюэл П. Альтман)



© 2025 Mash-xxl.info Реклама на сайте