Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Повторное влияние следа

Поверхность свободных вихрей 649 Поводок лопасти 163 Повторное влияние следа 455, 465, 593, 678 Подвеска лопастей 21 Поджатие спутной струи 99 Подрыв 25, 118, 129, 308 Полет вертикальный 24 Полиномы Лежандра 419 Поляра винта 68, 276 Поправка эмпирическая 124 Посадка безмоторная 24 Порыв ветра 539, 712 Постоянная времени 343, 727 Потери на закручивание следа 48  [c.1015]


Твердые тела могут быть неоднородными в объеме по своим свойствам. При изучении их поведения при повторных нагружениях следует различать исходную неоднородность (например, в результате предварительной пластической деформации, термической или термохимической обработки) и неоднородность, приобретаемую в процессе нагружений. В последнем случае возможна как циклически изменяющаяся (в связи с влиянием переменного температурного ноля), так и накапливающаяся (вследствие происходящей пластической деформации) неоднородность. Конечно, эти два вида неоднородности могут быть связаны взаимным влиянием.  [c.126]

Как видно из рис. 13.18 и 13.19, при использовании теории несущей поверхности расчетные нагрузки на лопасть оказываются существенно меньше, особенно для модели свободного следа. Уменьшение нагрузок происходит по двум причинам. Первая из них — эффект пространственного обтекания, вследствие которого нагрузки уменьшаются до 26% от определенных без этого эффекта (см. пик нагрузки при 105° и r/R = = 0,95). Вторая причина — повторное влияние пелены вихрей. Поскольку по теории несущей поверхности циркуляция присоединенных вихрей в месте встречи наступающей лопасти с вихрем ослабевает, снижается и интенсивность элементов концевых  [c.677]

По расположению в сварном соединении различают горячие трещины в шве, в зоне сплавления, в околошовной зоне, а также в зависимости от ориентировки их относительно направления сварки — продольные и поперечные. Во всех случаях вероятность образования трещин определяется соотношением пластических свойств соединений в т.и.х. и темпом деформаций. Однако степень влияния отдельных технологических и металлургических факторов для каждого вида может быть существенно различной в связи с неодинаковыми условиями формирования химической и физической неоднородности в различных зонах сварного соединения. Особо следует выделить трещины повторного нагрева, образующиеся в ранее наложенных валиках при многослойной сварке в результате термодеформационного воздействия от сварки последующих слоев.  [c.481]

Процесс поиска начинается с последнего этапа, на котором решается уравнение (П.41) при фиксированной Zj. На следующем этапе решается уравнение (П.40) при фиксированной Zi. При этом для каждой новой точки Zj корректируются значения [1( 2) путем повторного решения (П.41). На первом этапе решается уравнение (П.39) при фиксированной Zo. Аналогично для каждой новой точки Zi повторяется решение (П.40) и корректируется значение /2(Zi). Таким образом, изменение переменной на каждом этапе производится с учетом его влияния на все последующие этапы поиска. Для реализации такой вычислительной схемы достаточно задать только начальную точку Zo (рис. П.7).  [c.255]


Разрушение материалов в результате действия повторно приложенных напряжений и коррозионной среды называют коррозионно-усталостным разрушением. Существует мнение [98], что коррозионную усталость не следует рассматривать как процесс, существенно отличающийся от собственно усталости, поскольку для многих материалов даже обычная атмосфера является в известном смысле коррозионной средой. В первую очередь это относится к тем материалам и тем условиям нагружения, для которых не существует физического предела усталости, например к алюминиевым сплавам при комнатной температуре или прочим материалам при повышенных температурах. На усталостную прочность сталей и других материалов водопроводная и дистиллированная вода, атмосферный воздух оказывают заметное влияние.  [c.127]

Изложенные закономерности сопротивления термоциклическому нагружению относятся к однородным напряженным состояниям растяжения — сжатия или чистого сдвига. Они являются основой для определения малоцикловой несущей способности неоднородно напряженных элементов конструкций. Эта циклическая напряженность находится в упругопластической области, являясь при стационарном внешнем нагружении нестационарной в силу процессов перераспределения деформаций и напряжений при повторном деформировании. Анализ полей деформаций в зонах наибольшей напряженности элементов, особенно в местах концентрации, связан с решением достаточно сложных краевых задач, о чем далее будут изложены некоторые данные. Применительно к задачам концентрации напряжений и деформаций представилось возможным применить решение Нейбера [23], связывающее коэффициенты концентрации напряжений и деформаций Ке, в упругопластической стадии с коэффициентом концентрации напряжений а в упругой стадии. Анализ ряда теоретических, в том числе вычислительных, решений и опытных данных о концентрации деформаций позволил [241 усовершенствовать указанное решение путем введения в правую часть соответствующего выражения функции F (5н, а, тп), отражающей влияние уровня номинальных напряжений Он, отнесенных к пределу текучести, уровня концентрации напряжений а и показателя степени т диаграммы деформирования при степенном упрочнении. Зависимость Нейбера в результате введения этих влияний выражается следующим образом  [c.16]

Естественное стремление как можно лучше отразить свойства реальных материалов приводит к попыткам выхода за рамки допущений классической теории, основанной на принятии идеализированной модели среды. При этом, как было отмечено в гл. I, необходимо изменение формулировки основной задачи теории приспособляемости. Следует также иметь в виду, что при оценке влияния реальных механических свойств приходится исходить из определенной (а не произвольной) программы нагружения, учитывая отвечающий ей механизм разрушения. Так, влияние эффекта Баушингера и изменения диаграммы деформирования при чередовании знака пластической деформации имеет существенное значение для условий знакопеременного течения, но оно не сказывается, если повторные нагружения приводят к одностороннему накоплению деформации. С другой стороны, в последнем случае обычное деформационное упрочнение является дополнительным резервом приспособляемости.  [c.247]

Сварка сталей, склонных к закалке, проводится на мягких режимах (без последующей термообработки или с термообработкой в печах) или на жёстких режимах с термообработкой непосредственно в точечной машине. В первом случае во избежание быстрого охлаждения, хрупкости и появления трещин в ядре точки и зоне термического влияния время сварки должно быть не менее 2—3 сек. Во втором случае может применяться следующий цикл а) сварка, б) неполное охлаждение до. температуры ниже критической точки образования мартенсита, в) повторный нагрев в машине до температуры отпуска.  [c.373]


Известные методы повторного использования щелочи, содержащейся в отработавшем растворе анионитных фильтров, предусматривающие использование щелочного раствора только во второй и третьей ступенях анионирования для регенерации первой ступени, на повышение эффективности процесса ощутимого влияния не оказывают. В связи с этим следует разработать технологию, позволяющую повторно использовать щелочь именно после первой ступени анионитных фильтров, так как количество этих  [c.143]

Для определения влияния длительной выдержки в коррозионной среде на пороговый размах коэффициента интенсивности напряжений эксперимент ставили следующим образом. На вибростенде выращивали трещину определенной длины в присутствии раствора морской соли, постепенно снижая нагрузку до получения порогового размаха коэффициента интенсивности напряжений при R = —1. Затем образец нагружали статической нагрузкой, равной A/ h в растворе морской соли, и выдерживали в течение 720 ч. После этого образец испытывали на вибростенде при значении коэффициента интенсивности напряжений, равном пороговому в течение Коциклов. Таким образом были испытаны по три образца из каждой стали, и во всех случаях трещина при повторном циклическом нагружении не подрастала.  [c.181]

Из приведенной выше формулы следует, что поправка на влияние аэростатической силы зависит от разности объемов сличаемых тел. Кроме того, эта поправка при повторных сличениях одних и тех же тел непостоянна, так как она зависит также от плотности воздуха, которая изменяется при изменении барометрического давления и влажности воздуха.  [c.44]

Так называемые простые испытания (растяжение и сжатие) даже и в наше время составляют основу лабораторной работы по испытанию материалов к этим опытам следовало бы, пожалуй, добавить изучение сопротивления кручению в валах круглого поперечного сечения однако, все перечисленные методы испытаний не удовлетворяют уже больше потребности современной инженерной практики теперь необходимо производить исследование работы материала при действии сил иными более сложными способами. Новые способы испытаний, несмотря на все возрастающие трудности удовлетворительного истолкования и согласования их результатов, оказали большую пользу инженерам-проектировщикам. И до сих пор остается открытой для исследования обширная область изучения научных основ почти всех современных методов испытания материалов, так как почти всегда мы имеем дело с сложным распределением напряжений примером может служить напряженное состояние материала при различных испытаниях на твердость, а также в надрезанных образцах для ударной пробы. Эти и другие вопросы, такие, как влияние на напряжения повторных нагрузок, изменения в микроскопическом и атомном строении, вызванное действием нагрузок, и многие другие составляют характерные черты современных исследований.  [c.477]

Результаты, полученные для малых приведенных частот, представляют наибольший интерес для анализа вертолетных винтов. При нецелых значениях w/Q вследствие повторного влияния следа появляется лишь поправка к функции Теодорсена порядка k. Однако при колебаниях по гармоникам с частотами, кратными частоте вращения винта, влияние вихревых следов проявляется в падении функции уменьшения подъемной силы при малых частотах до величины С = h/ h- -nb). Из графиков на рис. 10.13 можно усмотреть, что эту формулу нулевого порядка относительно k можно использовать при малых k (примерно до  [c.464]

Функция уменьшения подъемной силы получена для гармонического движения и, следовательно, применима к частотному анализу и определению границ флаттера. При полете вперед в качестве С (k) следует использовать функцию Теодорсена. Если функцию умецьшения подъемной силы находят численным интегрированием, то приведенную частоту нужно вычислять по местной скорости потока k = аЬ/ит- Для низких гармоник махового движения приведенная частота мала, и эффект ближнего следа будет слабым (функция Теодорсена С 1). На ви-сении при небольшой силе тяги повторное влияние следа может быть значительным, и в качестве С следует использовать функцию уменьшения подъемной силы Лоуи (см. разд. 10.5). Если  [c.518]

Предлагаемая вниманию читателей монография известного американского специалиста по вертолетам представляет собой наиболее полное на сегодняшний день изложение теории вертолета, включающее целую иерархию математических моделей аэродинамики, динамики, аэроупругости, управляемости и устойчивости движения вертолета. При изложении аэродинамики несущего винта много места отведено классическим схемам импульсной теории винта. Рассмотрены модели вихревой теории, которые допускают аналитическое решение, хотя бы приближенное. Впервые так полно излагаются теория обтекания лопасти нестационарным потоком с учетом повторного влияния вихревого следа и методы расчета шума, создаваемого вертолетом. Вопросы динамики лопастей несущего винта рассмотрены в книге весьма подробно вгОють до использования наиболее сложного представления движения дифференциальными уравнениями с периодическими коэффициентами. При исследовании динамики несущего винта и вертолета в целом автор, отступая от традиционной формы изложения, широко пользуется весьма уместным здесь математическим аппаратом теории автоматического управления.  [c.5]

Такая модель нестационарного обтекания сечений винта на режиме висения, учитывающая повторное влияние пелены вихрей, развита в работе [L.113]. Плоская система вихрей, аппроксимирующая соответствующие винтовые поверхности, показана на рис. 10.10. Сначала рассмотрим однолопастный винт, считая, что вся завихренность сходит с единственной его лопасти. Сечение лопасти представлено тонким профилем, с задней кромки которого сходит (и простирается до бесконечности) след, состоящий из поперечных вихрей. Остальные винтовые вихревые поверхности, проходящие под лопастью, моделируются серией плоских параллельных вихревых слоев с расстоянием А между ними, причем каждый слой тянется до бесконечности вверх и  [c.455]


Высшие гармоники нагружения лопастей несущего винта при полете вперед рассматривались в работе Миллера [М.125] (1964 г.), где было установлено, что неоднородность поля скоростей протекания потока через диск винта связана главным образом с наличием и формой концевых вихревых жгутов лопастей, интенсивность которых определяется средним значением подъемной силы винта ). Таким образом, доминирующую роль в образовании высоких гармоник нагрузки при полете вперед играют не поперечные, а продольные вихри. Следующим по важности фактором является изменение скоростей протекания вследствие влияния ближней к лопасти части ее следа. Миллер установил, что при очень малых значениях характеристики режима ц рассмотренные выше эффекты повторного влияния пелены весьма существенны. Однако при ц 0,2 сохраняется влияние лишь близкой к лопасти части следа, учитываемое функцией Теодорсена.  [c.466]

В работе [D.13] описывается экспериментальное исследование усиления изгибных колебаний модели лопасти несущего винта, в котором особое внимание уделялось изучению повторного влияния вихревого следа на аэродинамическое демпфирование таких колебаний по различным формам. Величина демпфирования махового движения лопасти на режиме висения определялась по ее вынужденным колебаниям при приложении моментов в плоскости взмаха и по переходным процессам. Получено хорошее соответствие с результатами теории Лоуи. Подтверждено получаемое расчетом уменьшение демпфирования гармоник с частотой, кратной частоте вращения винта, вследствие уменьшения определяющей нестационарную подъемную силу функции С.  [c.466]

Измерение махового движения двухлопастного шарнирного винта при вынужденных колебаниях общего шага, а также при вертикальных колебаниях втулки проводилось в работе [Н.29]. При малых значениях общего шага отмечено заметное повторное влияние пелены при частоте, близкой к 2Q, что и предсказывается теорией для таких изменений общего шага. При больших значениях общего шага влияние вихревых следов исчезало. Измеренные величины хорошо согласовались с полученными расчетом по теории Лоуи. Отмечено предсказываемое теорией снижение амплитуды махового движения при изменении общего  [c.466]

Влияние вихревого следа винта. Повторное влияние вихревого следа на нестационарные аэродинамические нагрузки может быть учтено с помощью функции уменьшения подъемной силы С (кэфф). На некоторых режимах работы вихревой след несущего винта может существенно влиять на устойчивость по флаттеру. В гл. 10 были рассмотрены функции Теодорсена, Лоуи и ряд других приближенных функций уменьшения подъемной силы. Однако решение характеристического уравнения для нахождения границы устойчивости с учетом нестационарности потока не так просто получить, как в стационарном (С = 1) случае. Прием, описанный в предыдущем разделе, неприемлем, поскольку С является комплексным числом. С (а).  [c.592]

Флаттер, вызываемый вихревым следом. На некоторых режимах работы повторное влияние вихревого следа несущего винта может вызывать неустойчивость движения по одной степени свободы. С учетом функции Лоуи аэродинамическое демпфирование движений лопасти в ГШ и ОШ может значительно уменьшиться. На практике такой флаттер возникает при условиях, когда повторное влияние вихревого следа наиболее велико, т. е. в случаях малого общего шага при наземных испытаниях или на авторотации, на режимах висения или полета с малыми скоростями и в случае, когда собственная частота установочного движения почти кратна частоте вращения винта. В этих условиях след остается вблизи диска винта, -И вихревые поверхности индуцируют скорость в фазе. При увеличении общего шага, скорости набора высоты или полета-вперед влияние следа, а значит, и возможность возникновения вызванного им флаттера уменьшаются. Неустойчивости по одной степени свободы учитываются решением уравнений совместных махового и установочного движений лопасти как флаттер и могут быть определены по преобладанию составляющей собственного вектора, соответствующей корню с положительной действительной частью.  [c.593]

Ввиду значительной инерционности большеобъемных газогенераторов, установившийся режим наступает после внесения каких-либо изменений через 1,5—2,5 часа, а иногда и больше. Поэтому после каждого эксперимента надо проследить ход процессов до наступления устойчивого режима, определяемого по показаниям контрольно-измерительной аппаратуры. Только после повторного проведения сравнительных испытаний и совпадения показателей обоих испытаний переходят к установлению влияния следующего фактора.  [c.382]

При измерении микротвер-дости необходимо учитывать неизбежный разброс получаемых значений вследствие влияния соседних структурных составляющих с иной твердо-стью вследствие различной psi толщины испытуемых элемен-тов структуры, ошибки измерения и других причин. Поэтому нужно проводить несколько испытаний (5—10) по возможности в одинаковых условиях и пользоваться средним значением этих измерений. Повторные измерения следует проводить каждый раз на новом месте структурной составляющей.  [c.106]

Из - сравнения характеристик материалов типа 1 следует, что равномерное распределение волокон по трем ортогональным направлениям является наиболее предпочтительным для формирования свойств углерод-углеродных композиционных материалов. Их модули упругости и сдвига значительно выше, чем у материалов с неравномерным распределением. Положительное влияние на эти характеристики оказывает и повторная гра-фитизация, что следует из сравнения данных типа 2 и варианта типа 1Б (см. табл. 6.6).  [c.175]

Предварительно изучали влияние статических напряжений на скорость коррозии трубной стали на деформированных изгибом (по трехточечной схеме) образцах стали 17ГС в термостатированных условиях и перемешиваемой среде, представляющей смесь нефти с 3%-пым хлоридом натрия в отношении 1 1. Скорость коррозии определяли по потере массы за 720 ч выдержки. Как следует из рис. 104, с увеличением напряжений до предела текучести (350 МПа) скорость коррозии увеличивается, а затем при достижении текучести уменьшается вследствие наступления стадии легкого скольжения и релаксации напряжений, обусловленной выбранной схемой нагружения с заданной величиной деформации. Это указывает на возможность усиления коррозионного взаимодействия трубной стали с рабочей средой даже при нагружении в упругой области с возникновением коррозионных поражений, которые в дальнейшем могут стать концентраторами напряжений и после инкубационного периода инициировать возникновение коррозионно-механических трещин. Если в концентраторе отсутствуют условия для существенной релаксации напряжений, что обычно имеет место при циклическом (повторно-статическом) нагружении с накоплением микроискажений решетки, процесс коррозионного взаимодействия будет ускоряться на протяжении всей стадии деформационного упрочнения, как это указывалось в гл. П.  [c.230]

Существенное влияние асимметрии цикла нагружения на закономерности образования нераспространяющихся усталостных трещин было показано при испытаниях на усталость при осевом растял ении-сжатии образцов диаметром 8 мм, вырезанных по направлению прокатки из листа (длиной 1300 мм, шириной 220 мм, толщиной 23 мм) отожженной (400 °С, 30 мин) латуни со следующим химическим составом ( %) 69,6 Си 0,1 Fe следы РЬ и остальное Zn, Механические свойства исследованного материала о в = 317 МПа ат=102 МПа ifi = 75,2 % =1,14Х Х10 МПа средний размер зерна составлял примерно 0,05 мм. После механической обработки образцы подвергали повторному отжигу при 400 °С в течение 40 мин и электрополированию на глубину 10—30 мкм.  [c.88]


В сварочной лаборатории МВТУ им. Баумана разработан метод определения объемных остаточных напряжений в стыковых сварных соединениях большой толщины. Метод позволяет определять напряжения как в глубине сварного соединения (объемные напряжения), так и на его поверхности (двухосные напряжения). Сущность его состоит в следующем в сварном соединении большой толщины сверлят специальные ступенчатые отверстия, ориентированные по главным осям поля напряжений или под некоторым углом к ним. В эти отверстия помещают специальные цилиндрические вставки с наклеенными на их поверхность тензодатчиками сопротивления. Перед установкой в образец вставки тарируют на машине для испытаний на растяжение. Коме того, перед проведением измерения напряжений вставке сообщают определенный предварительный натяг, который дает возможность регистрировать его деформации обоих знаков. После установки вставки и снятия прибором показания соответствующего напряжения предварительного натяга из образца вырезают столбик с отверстием и вставкой. Затем снимают повторное показание прибора. Практика измерений показала, что оптимальными размерами вырезаемого столбика является размер АОХА мм. Увеличение этого размера ведет к увеличению степени осреднения искомого компонента напряжения, а его уменьшение — к усилению влияния отверстия на результат измерения деформации. По разности произведенных замеров определяют величину упругой деформации, вызванной снятием остаточных напряжений, и подсчитывают величину этих напряжений.  [c.215]

Все же иногда повторных расчетов (во втором приближении) избегать не следует, например при проектировании экспернмен-тальных или сильно модернизированных установок, не имеющих прототипов в прежней практике газотурбостроения. В этих случаях рекомендуется по возможности упростить первый расчет, пренебрегая некоторыми второстепенными факторами, например утечками рабочего агента, измеряемыми коэффициентом б, и влиянием величины р. При расчете цикла в первом приближении можно в формулах (279), (280) и (281) принять (1 + Р) и (1 — б) равными единице. Конечно, это можно рекомендовать лишь в том случае, если расчеты второго приближения будут необходимы. Простейший цикл связан со значительным уменьшением, экономичности (простота не дается даром ). Прежде всего, газы, уходящие из турбины в атмосферу, уносят с собой значительное количество неиспользованной тепловой энергии. Для ее утилизации приходится вводить в схему регенератор, в котором можно было бы создать теплообмен между горячими отработавшими газами и сравнительно холодным потоком воздуха, текущего из компрессора в камеру сгорания. Как и в паросиловых установках, такой внутренний регенеративный теплообмен приводит к существенному увеличению экономичности цикла (рис. 49).  [c.156]

При точном исследовании И. с учётом пластич. деформаций пользуются более сложными методами, изучая весь процесс деформирования бруса, его разгрузку и повторное нагружение. Исследование осложняется при необходимости учитывать влияние на И. времени, высоких темп-р, а также специфич, свойств материала, напр, в случае брусьев, выполняемых из пластмасс, следует учитывать реологич. эффекты (см. Реология).  [c.100]

Следующим важным этапом в работах по созданию монокри-сталлических сплавов явилась разработка сплавов с рением, улучшающим их жаростойкость, и небольшими добавками иттрия и/или редкоземельных элементов, например лантана, для улучшения коррозионной стойкости сплавов в агрессивных средах. Благотворное влияние рения на жаропрочность связано с тем, что он упрочняет матрицу сплава, а также препятствует огрублению мелких выделений у -фазы при температурных выдержках. Иттрий и редкоземельные элементы в соответствующих пропорциях стабилизируют оксидные пленки оксида алюминия и оксида хрома на поверхности сллава, что придает ему заметную стойкость к окислению и позволяет обходиться без применения защитных покрытий на поверхности лопастей турбинных лопаток [6]. Использование в качестве легирующего элемента рения существенно повышает стоимость сплава. Для повышения экономической эффективности промышленного применения таких сплавов необходимо разработать технологию повторной переработки отходов литейного производства для возвращения в оборот материала, расходуемого на литейные заслонки и прибыльную часть отливки, а также бракованных деталей. Успешная разработка не требующих покрытия сплавов, содержащих иттрий и редкоземельные элементы, потребует исключительно жесткого ко-  [c.331]

Ра-ссмотрениая концепция условий прочности предполагает линейное или нелинейное суммирование компонент повреждений, представляя процесс в виде комбинации усталостного (от повторного действия реверсивных деформаций) и длительного статического (от действия односторонне накопленных деформаций) повреждений. Базовыми при оценке повреладений являются кривые малоцикловой усталости (жесткий режим нагру кения) и длительной прочности. Кривую малоцикловой усталости следует получать в условиях, позволяющих исключить влияние времени на расчетную характеристику (высокая частота, отсутствие выдержек). Роль временных процессов отражает кривая длительной прочности. Релаксационные процессы, характерные для условий работы материала в максимально напряженных зонах конструкции, приводят к эквивалентным деформациям, их учитывают при определении доли усталостного повреждения.  [c.93]

В заключение следует подчеркнуть, что все полученные в расчете по кольцу формулы могут быть использованы только для ориентировочного расчета. Основное преимущество решения по кольцу состоит в ег простоте и наглядности, в том, что с его помощью можно легко проследить за влиянием того или иного параметра (толщин стенок, их материалов и температур, значений давлений) на напряжения в стенках и на значения сил в связях. Кроме того, простая модель двухслойного кольца, материал которого считается работающнм в однослойном напряженном состоянии, позволяет хотя бы качественно проследить за влиянием таких факторов, как повторные пуски двигателя, остаточные технологические напряжения, и учесть реальную последовательность нагружения при пуске двигателя.  [c.362]

Опыты заключались в нагружении образцов при растяжении до определенной конечной деформации при одной температуре, в разгрузке до нулевого напряжения, изменении температуры окружающей среды, с повышением или понижением ее до нового уровня, а затем повторном нагружении образца до большой конечной деформации. Ожидалось, что сравнение функций отклика для второго значения температуры окружающей среды с функцией отклика для опыта, проведенного от нулевого значения напряжения при первоначальной температуре окружающей среды, позволит установить степень влияния термической истории. Они рассматривали четыре значения температуры 78, 194, 260 и 292 К. Ниже мы обсудим результаты, соответствующие только крайним из указанных значений. На рис. 4.216 в терминах истинных напряжений и истинных деформаций приведены результаты серии опытов с первоначальным нагружением при 292 К до указанных конечных деформаций и затем, после разгрузки, с повторным нагружением до конечной деформации при 78 К- Дорн, Голдберг и Титц заметили, что конечная деформация при повторном нагружении при более низкой температуре не следует функции отклика (штриховая линия), полученной при проведении опыта сразу именно при такой температуре. То, что две функции отклика не совпадают, привело авторов к заключению, что функция отклика при конечных деформациях  [c.322]

Исследования по влиянию режимов термической обработки и высокотемпературной деформации на фазовый состав и структуру сплавов 1-й группы [83, 85—90] позволяют представить следующую последовательность фазовых и структурных изменений в них. В полученном в реальных условиях литом материале, который может рассматриваться как материал, частично закаленный с высоких температур, процесс распада твердого раствора полностью подавить не удается, образуются вторичные карбиды или (W, Ме)а С и кар- бидыМеС, где Me — легирующий металл. При нагреве на температуры 1ШО—2000° С (ниже температуры растворимости карбида в вольфраме) происходит дораспад твердого раствора и снятие литейных напряжений. Отжиг литых сплавов на температуры однофазного состояния (2300—2700° С) обеспечивает полное растворение выделившихся первоначально в слитке карбидов с последующим выделением их в процессе охлаждения в более дисперсном виде. При этом происходит частичная инверсия Wg - МеС. Повторный отжиг старение) при более низких температурах (1700—2000° С) приводит к полному распаду твердого раствора с выделением более дисперсных, чем Wj карбидов МеС.  [c.295]



Смотреть страницы где упоминается термин Повторное влияние следа : [c.465]    [c.468]    [c.595]    [c.643]    [c.678]    [c.198]    [c.556]    [c.124]    [c.325]    [c.138]    [c.664]    [c.57]    [c.140]    [c.122]    [c.467]   
Теория вертолета (1983) -- [ c.455 , c.465 , c.593 , c.678 ]



ПОИСК



Повторность

Следы



© 2025 Mash-xxl.info Реклама на сайте