Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Неоднородное поле скоростей протекания

НЕОДНОРОДНОЕ ПОЛЕ СКОРОСТЕЙ ПРОТЕКАНИЯ  [c.652]

Другим важным фактором, влияющим на работу винта в условиях срыва, является аэроупругая реакция лопастей при больших нагрузках, выражающаяся в характере вибраций вертолета и нагрузок в цепи управления. Движение лопастей в свою очередь приводит к изменению углов атаки, а следовательно, и аэродинамических сил. В частности, большие пикирующие моменты профиля при срыве вызы-вают сильное закручивание лопасти, что непосредственно изменяет углы атаки сечений. Поскольку жесткость цепи управления лопастью обычно невелика, крутильные колебания лопасти в основном состоят из ее поворота как твердого тела за счет упругих деформаций цепи управления. Таким образом, расчет характеристик несущего винта в условиях срыва не может ограничиваться рассмотрением лишь аэродинамических сил, а требует полного анализа, включающего аэроупругие колебания лопастей. При этом углы атаки сечений должны определяться для неоднородного поля скоростей, индуцируемых вихревым следом винта с учетом упругого кручения лопасти. Игнорирование неравномерности скорости протекания и упругого кручения лопасти ведет к большим погрешностям при расчете характеристик винта в условиях срыва.  [c.798]


Диффузия в плазме с ионами разных сортов даже при / — О не сводится к амбиполярной, т. к. электрич. поле оказывается пропорциональным градиентам всех парциальных концентраций. При этом нек-рые потоки частиц могут быть направлены в сторону возрастания их концентрации. В многокомпонентной плазме или в случае, когда подвижности зависят от электрич. поля, протекание пост, тока приводит к движению неоднородностей со скоростью а м биполярного дрейфа. В плазме, содержащей к сортов заряж. частиц с пост, подвижностями, имеется (А — 2) разл. значений скорости амбиполярного дрейфа, соответствующих разным типам сигналов. Напр., если имеются  [c.570]

Метод расчета неоднородного поля индуктивных скоростей винта вертолета и высших гармоник нагрузок развит в работах Миллера [М.123, М.124] ). При постоянной или линейно изменяющейся по радиусу винта скорости протекания расчетные гармоники аэродинамических нагрузок убывают как ц" (где п — номер гармоники), тогда как по результатам измерений в определенных условиях полета (переходные режимы, посадка с подрывом) доминируют пятая и шестая гармоники нагрузки. Такие гармоники вызывают увеличение шума винта и вибраций вертолета. Основной причиной их, возникновения являются скорости, индуцируемые системой вихрей несущего винта. По-  [c.663]

Исследования в области равновесия и условии развития трещин с привлечением методов теории упругости и пластичности, экспериментальных средств измерения полей деформаций в их окрестности позволили описать ряд закономерностей о роли напрягаемых объемов, остаточной напряженности, условий нагружения и деформирования, концентрации напряжений и объемности напряженного состояния на условия квазихрупкого и хрупкого разрушений. На этой основе были введены и объяснены представления о критическом размере трещины или исходного дефекта, о критических размерах напрягаемых объемов, об энергии упруго-пластической деформации, необходимой для образования свободных поверхностей трещипы и о вязкости разрушения, о связи скорости протекания процесса разрушения в связи с повышенными энергиями упругой напряженности и неоднородностью ее полей.  [c.517]

Но иногда требование М < 1 оказывается недостаточным число Маха и сжатие среды могут быть малыми, в то время как смещения частиц не будут малы по сравнению с характерным размером движения жидкости. Это получится, если пространственная неоднородность поля определяется не волновым характером процесса, а геометрией задачи. Таково, например, движение в сферической волне вблизи центра (расхождение волны) или протекание жидкости в трубе переменного сечения. В этих случаях масштаб пространственной неоднородности не зависит от скорости звука и сохранился бы даже при полной несжимаемости среды. При таких движениях конвективная производная может не быть малой по сравнению с локальной производной даже при малом числе Маха поле быстро меняется в пространстве независимо от скорости временного изменения. Особенно нагляден пример установившегося протекания жидкости в трубе локальная производная любой величины, характеризующей течение, равна нулю во всех точках, а конвективная производная отлична от нуля критерий малости числа Маха при малой скорости течения будет выполнен, но критерий u/L 1 нарушится и линеаризацию уравнений произвести будет нельзя. Только требование u L < 1 универсально для любой формы волны и для любой сжимаемости среды.  [c.40]


Необходимая температура в реакторе в процессе восстановления поддерживается автоматическим регулированием скорости подачи четыреххлористого титана. Автоматическое регулирование температуры усложняется тем, что тепловое поле реактора неоднородно. Максимальная температура по мере протекания процесса поднимается вверх, так как перемещается зона реакции. Стенка реторты наиболее разогрета в кольцевой области, где в данный момент реакция протекает интенсивнее. Ввиду этого устанавливают по высоте реторты несколько термопар, измеряющих температуру стенки. По мере перемещения зоны реакции специальный прибор ( искатель максимальной температуры ) автоматически подключает к регулятору подачи хлорида титана ту термопару, которая в данный момент показывает наиболее высокую температуру. Принципиальная схема регулирования температуры показана на рис. 101 [8].  [c.246]

Высшие гармоники нагружения лопастей несущего винта при полете вперед рассматривались в работе Миллера [М.125] (1964 г.), где было установлено, что неоднородность поля скоростей протекания потока через диск винта связана главным образом с наличием и формой концевых вихревых жгутов лопастей, интенсивность которых определяется средним значением подъемной силы винта ). Таким образом, доминирующую роль в образовании высоких гармоник нагрузки при полете вперед играют не поперечные, а продольные вихри. Следующим по важности фактором является изменение скоростей протекания вследствие влияния ближней к лопасти части ее следа. Миллер установил, что при очень малых значениях характеристики режима ц рассмотренные выше эффекты повторного влияния пелены весьма существенны. Однако при ц 0,2 сохраняется влияние лишь близкой к лопасти части следа, учитываемое функцией Теодорсена.  [c.466]

Таким образом, расчет неоднородного поля KOpo xefi протекания основывается на определении скоростей, индуцируемых дискретным элементом вихревой пелены. Ниже дается вывод формул для скоростей, индуцируемых вихревой линией или поверхностью. Прежде всего будет рассмотрена прямолинейная вихревая нить, что позволит изучить ряд общих черт поля индуцируемых вихрями скоростей. Вихревая нитв конечной интенсивности представляет собой предельный случай, когда поле вихрей конечной суммарной интенсивности сконцентрировано в трубке бесконечно малого поперечного сечения. Вблизи вихревой нити поле скоростей имеет особенность, причем скорости стремятся к бвсконечности обратно пропорционально расстоянию до нити. В реальной жидкости вследствие влияния вязкости эта особенность отсутствует, ибо диффузия вихрей превращает нить в трубку малого, но конечного поперечного сечения, называемую ядром вихря. Скорость принимает максимальные значения на некотором расстоянии от оси вихревой трубки, которое можно принять в качестве радиуса ее ядра. Поскольку лопасти несущего винта часто проходят очень близко к концевым вихрям от впереди идущих лопастей, ядро вихря играет важную роль в создании индуктивных скоростей на лопастях несущего винта, и существование такого ядра следует учитывать при описании распределения вызываемой винтом завихренности. Радиус ядра концевого вихря составляет примерно 10% длины хорды лопасти. Экспериментальных данных о размерах ядра концевого вихря очень мало, особенно для случая вращающейся лопасти.  [c.489]

Выше обычно принималось, что индуцированная вихрями скорость протекания постоянна по диску или в крайнем случае изменяется линейно. Однако в действительности поле индуктивных скоростей весьма неоднородно, ибо условия постоянства скорости (постоянная циркуляция и очень большое число лопастей) ) для реального винта не выполняются. Распределение индуктивных скоростей определяется в основном дискретными концевыми виxpямI , сходящими с лопастей. При работе винта спиралевидные концевые вихри проходят в непосредственной близости от диска винта, периодически оказываясь вблизи лопастей. В частности, как на режиме висения, так и при полете вперед каждая лопасть близко подходит к концевому вихрю, сошедшему с предыдущей лопасти. Как уже отмечалось в разд. 10.8.1, скорость вращения в прямолинейном диффундирующем вихре по удалении от его центра сначала растет, а затем падает, причем максимум скорости имеет место на расстоянии, равном радиусу ядра вихря. Таким образом, концевые вихревые жгуты создают в зоне движения лопастей крайне неоднородное поле скоростей.  [c.652]


С этого времени в большом количестве проводятся эксперимен тальные и теоретические работы по исследованию дисперсии и пог лощения ультразвуковых волн в газах, а затем и в жидкостях, сре ди которых следует отметить работы Кнезера [9] и Бикара [10] К настоящему времени накопилось очень большое количество ра бот по измерению скорости и поглощения ультразвука в газах, в смесях газов, жидкостях, смесях различных жидкостей, растворах, электролитах, проведенных при разных физических условиях (температура, давление, плотность, фазовые переходы и т. д.). Результаты этих измерений важны не только для изучения молекулярных свойств газов и жидкостей, но также широко используются в технике для контроля протекания различных технологических процессов (по изменению скорости и поглощения звука). Методика этих измерений хорошо отработана и изложена во многих учебниках, поэтому мы не будем ее описывать. Отметим только, что на ультразвуковых частотах современные импульсные, фазовые и в особенности импульсно-фазовые методы позволяют получить относительную ошибку Ас/с 10 —10 , а абсолютное значение с измерять с точностью 10" %. Аппаратурная точность может быть выше, однако точность измерения скорости ограничивается трудностью поддерживать неизменными физические свойства среды (температуру, плотность, однородность, отсутствие потоков и т. д.) и неоднородностями акустического поля абсолютное значение а в области ультразвуковых частот можно измерять с ошибкой 2—5%. Трудности в определении коэффициента поглощения звука по результатам измерений также состоят в необходимости детального учета неоднородности излучаемого акустического поля, дифракционных эффектов, неизменности физических свойств среды. Для газов измерения на частотах выше нескольких МГц (при нормальном атмосферном давлении и комнатной температуре) затруднены из-за очень большого поглощения.  [c.42]

Воздействие мощного УЗ на обогатительные и гидрометаллургич. процессы связано с возникновением в жидкой среде акустических течений и кавитации, что вызывает перемешивание жидкости, её гомогенизацию, ускоряет протекание процессов конвективной диффузии, оказывает влияние на температурное поле в среде. На границе твёрдая — жидкая фаза УЗ вызывает точечную эрозию твёрдой поверхности, её очистку, раскрытие микропор и др. эффекты, что может быть использовано для измельчения твёрдой фазы или изменения состояния её поверхности. Эти действия УЗ также во многом определяются развитием в жидкости кавитации и микропотоков, возникающих вблизи любой неоднородности среды. Кроме того, микропотоки существенно уменьшают толщину диффузионного слоя, что приводит к интенсификации процессов, где лимитирующим фактором является скорость диффузии через пограничный слой (см. Тепломассообмен в ультразвуковом поле). В качестве источников УЗ в гидрометаллургич. и обогатительных процессах применяются гидродинамические излучатели вихревого, щелевого и роторного типа, а также (в основном для лабораторных экспериментов) магнитострикционные преобразователи с излучающими диафрагмами.  [c.348]


Смотреть страницы где упоминается термин Неоднородное поле скоростей протекания : [c.652]    [c.179]    [c.223]    [c.570]   
Смотреть главы в:

Теория вертолета  -> Неоднородное поле скоростей протекания



ПОИСК



Неоднородность

Неоднородность поля

Поле скоростей

Поля скоростей



© 2025 Mash-xxl.info Реклама на сайте