Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ВАРИАЦИОННЫЕ ПРИНЦИПЫ И АНАЛИТИЧЕСКАЯ МЕХАНИКА

Значительная часть книги посвящена вариационным принципам и аналитической динамике. Характеризуя аналитическую динамику в своих Лекциях о развитии математики в XIX столетии , Ф. Клейн писал, что физик для своих задач может извлечь из этих теорий лишь очень немного, а инженер — ничего . Развитие науки в последующие годы решительно опровергло зто замечание. Гамильтонов формализм лег в основу квантовой механики и является в настоящее время одним из наиболее часто употребляемых орудий в математическом арсенале физики. После того как было осознано значение симплектической структуры и принципа Гюйгенса для всевозможных задач оптимизации, уравнения Гамильтона стали постоянно использоваться в инженерных расчетах в этой области. С другой стороны, современное развитие небесной механики, связанное с потребностями космических исследований, привело к новому возрождению интереса к методам и задачам аналитической динамики.  [c.9]


Курс аналитической механики является фундаментом, на который опирается изучение таких разделов теоретической физики, как квантовая механика, специальная и общая теория относительности и др. Поэтому в книге подробно освещаются вариационные принципы и интегральные инварианты механики, канонические преобразования, уравнение Гамильтона — Якоби, системы с циклическими координатами (главы И, III, IV и VII). Следуя идеям А. Пуанкаре и Э. Картана, автор кладет в основу изложения материала интегральные инварианты механики, которые здесь являются не декоративным украшением теории, а ее рабочим аппаратом.  [c.9]

Таким образом, естественно формулируется связь между аналитической механикой вариационных принципов и теорией групп преобразования. Эта связь допускает дальнейшее обобщение.  [c.877]

Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внес существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших Остроградского в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит ого с Лагранжем — одним из создателей вариационного исчисления и творцом аналитической механики. Ранее нами указывалось, что вариационными принципами механики занимались такие корифеи науки, как Ферма, Мопертюи, Эйлер, Лагранж, Гамильтон. Мы также отметили, что новый этап в разработке принципа наименьшего действия связан с именем Лагранжа, который поставил целью свести динамику к чистому анализу. В работах Лагранжа проблемы механики представляют собой лишь определенный класс задач вариационного исчисления.  [c.214]

ПРИМЕНЕНИЕ ВАРИАЦИОННЫХ ПРИНЦИПОВ И ОСНОВНЫХ УРАВНЕНИЙ АНАЛИТИЧЕСКОЙ МЕХАНИКИ ДИСКРЕТНЫХ СИСТЕМ ДЛЯ ОПИСАНИЯ ПРОЦЕССОВ В ТЕРМОУПРУГОЙ СРЕДЕ  [c.118]

В XIX в. ряд первоклассных открытий был сделан русскими учеными. Среди них в первую очередь следует отметить труды академика Михаила Васильевича Остроградского (1801—1861), которому принадлежат глубокие исследования в области аналитической механики особенно важное значение имеет установление М. В. Остроградским вариационного принципа, эквивалентного в частных случаях принципу, известному под названием принципа Гамильтона . Поэтому русские ученые прошлого века называли его принципом Остроградского — Гамильтона. Это название мы и сохраним в дальнейшем.  [c.22]


В 1788 г. появилось сочинение Ж- Лагранжа Аналитическая механика , в котором вся механика была изложена строго аналитически на основе принципа Даламбера и принципа возможных перемещений. При этом Лагранжем были получены дифференциальные уравнения движения механической системы в обобщенных координатах. Дальнейшее развитие аналитических методов, предложенных Лагранжем для исследования движения и равновесия несвободных механических систем, привело к установлению ряда дифференциальных и вариационных принципов механики.  [c.16]

Ряд важнейших исследований по аналитическим методам решения задач механики принадлежит знаменитому русскому математику и механику М. В. Остроградскому (1801 —1861). Он установил очень важный вариационный принцип динамики — принцип наименьшего действия, позволяющий сводить изучение движения механических систем к некоторой экстремальной задаче. Этот принцип называется принципом Остроградского — Гамильтона, так как независимо от Остроградского и в несколько менее общем виде он одновременно также был дан английским ученым Гамильтоном (1805— 1865). М. В. Остроградский решил также много частных механических задач в области гидростатики, гидродинамики, теории упругости, теории притяжения и баллистики.  [c.16]

Многие задачи механики стерл<ней, с которыми приходится сталкиваться инженеру-расчетчику, не поддаются точному решению. К таким задачам, например, относятся задачи статики и динамики стержней с переменным сечением и нелинейные задачи. Для решения подобных задач приходится использовать приближенные методы, как численные, так и аналитические. Часто оказывается, что полученные точные решения из-за чрезвычайной сложности записи являются практически бесполезными для математической и физической интерпретации или численных расчетов, т. е. приходится для получения нужной информации все равно прибегать к упрощениям или к аппроксимациям полученных решений. Среди приближенных методов решения уравнений равновесия наибольшее распространение получили методы, использующие вариационные принципы механики.  [c.128]

В 1967 г. И. Ф. Бахарева сформулировала общий вариационный принцип неравновесной термодинамики на основе аналогий с лагранжевой формой аналитической механики, справедливый как в линейной, так и в нелинейной области.  [c.267]

Исключительная общность вариационных принципов механики, возможность сравнительно простого их обобщения на многочисленные (немеханические) области физики, их связь с законами сохранения и группами Ли ставит эти принципы в центральное положение при решении многих фундаментальных проблем физики. Это может показаться удивительным, ибо классическая (аналитическая) механика, в которой эти принципы играют основную роль, является, строго говоря, существенно приближенной физической теорией. И тем не менее классическая механика остается в настоящее время и сохранится навсегда как эталон ясности и последовательности идей для всех математических теорий физических (и не только физических) явлений природы.  [c.5]

Действие этого постулата не ограничивается областью статики. Он приложим также и к динамике, где принцип виртуальных перемещений соответствующим образом обобщается принципом Даламбера. Так как все основные вариационные принципы механики — принципы Эйлера, Лагранжа, Якоби, Гамильтона — являются всего лишь другими математическими формулировками принципа Даламбера, постулат А есть в сущности единственный постулат аналитической механики и поэтому играет фундаментальную роль Принцип виртуальных перемещений приобретает особое значение в важном частном случае, когда приложенная сила Fi моногенная, т. е. когда она получается из одной скалярной функции — силовой. В этом случае виртуальная работа равна вариации силовой функции LJ qi,. .., ( ). Так как силовая функция равна потенциальной энергии, взятой с обратным знаком, то можно сказать, что состояние равновесия механической системы характеризуется стационарностью потенциальной энергии, т. е. условием  [c.100]


Связь аналитической механики и современной физики. Два великих достижения современной физики теория относительности и квантовая механика — теснейшим образом связаны с аналитической механикой. Теория относительности Эйнштейна революционизировала все области физики. Было показано, что ньютонова механика справедлива лишь приближенно для скоростей, малых по сравнению со скоростью света. Однако аналитический метод, основанный на использовании принципа наименьшего действия, остался неизменным. Модифицирована была лишь функция Лагранжа получение же дифференциальных уравнений движения из принципа минимума осталось. Действительно, полная независимость вариационного принципа от какой-либо специальной системы отсчета делала его особенно ценным для построения уравнений, удовлетворяющих принципу общей относительности. Этот принцип требует, чтобы основные уравнения природы оставались инвариантными при произвольных преобразованиях координат.  [c.394]

Огромная литература, которая существует по вариационным принципам, конечно, не могла быть даже и в малой степени охвачена в одном сборнике. Естественно, что для помещения в сборник отобраны прежде всего основные работы, а также работы, освещающие связанные с вариационными принципами проблемы теории групп, теории преобразований и т. п. Из работ, относящихся к применению вариационных принципов в физике, взяты те, которые имели важное значение в развитии физики и в то же время помогали уяснению физического смысла, значения и границ применимости этих принципов за пределами аналитической механики. Вопросы, связанные с применением вариационных принципов механики для исследований в области механики сплошных сред и многочисленных прикладных задач, должны быть рассмотрены особо. Не включены в сборник также работы, относящиеся к применению вариационных принципов механики в современных исследованиях по теории квантованных полей и т. п., так как эти работы освещены в ряде монографий и сборников основных статей, вышедших в самое последнее время.  [c.5]

Вариационные принципы механики неразрывно связаны с теорией групп преобразований, синтезом аналитического и геометрического аспектов механики, оптико-механической аналогией и единой волново-корпускулярной картиной движений, классической и квантовой теорией физических полей, вариационными методами решения задач движения, равновесия, устойчивости и структуры физических систем и другими фундаментальными проблемами.  [c.780]

Для нас в этой блестящей характеристике является важным подчеркивание основного значения математического метода для работы Лагранжа в области механики. И действительно, в силу аналитического (и принципиально аналитического) характера его механики подход Лагранжа к отдельным проблемам теснейшим образом связан с его математическими работами в различных ветвях анализа. Фурье говорит ...Он сводит все законы равновесия и движения к одному принципу, и, что не менее удивительно, он их подчиняет одному методу исчисления, изобретателем которого он сам является ). В самом деле, как известно, с Лагранжа начинается новая эпоха вариационного исчисления.  [c.796]

Подробное рассмотрение всех относящихся сюда работ представляет, собственно говоря, уже задачу истории вариационного исчисления или истории аналитической динамики в целом. Мы же рассмотрим лишь f е из них, которые в той или иной степени существенно обогатили, развили и углубили понимание вариационных принципов механики, прежде всего с математической точки зрения. Первое место по праву принадлежит здесь замечательному русскому математику М. В. Остроградскому.  [c.829]

Развитие вариационных принципов механики во второй половине XIX в. и начале XX в. произошло прежде всего путем обобщения их на различные виды механических систем и выяснения характера варьированных движений (см. выше), а затем путем распространения их на механику сплошных сред и путем разработки смежных вопросов аналитической механики. Упомянем прежде всего о вариационном принципе Кастилиано—начале наименьшей работы деформации ).  [c.842]

Для полной характеристики комплекса вопросов, связанных с вариационными принципами, необходимо отметить, что, кроме уравнений Лагранжа второго рода и канонических уравнений Гамильтона, была найдена еще одна группа уравнений, занимающая промежуточное положение между уравнениями Лагранжа и Гамильтона. Существенно новое, особенно для приложений в физике, внес в этот вопрос аналитической механики Раус.  [c.843]

Вариационные принципы в механике (в широком смысле) рассматриваются в курсах аналитической механики и в книгах  [c.439]

Книга Герца Принципы механики и ее место в развитии механики. Особое место среди вариационных принципов механики, которые должны указать интегралы или функции, имеющие экстремум в действительном движении системы, занимает принцип наименьшего принуждения Гаусса. Этот принцип является общим началом и может быть выражен одной из самых простых аналитических формулировок, в которой нахождение уравнений движения любой системы, голономной или неголономной, сводится к нахождению минимума функции второй степени.  [c.228]

Уравнения Лагранжа. Дифференциальные уравнения, соответствующие вариационному принципу Гамильтона, называют уравнениями Лагранжа (второго рода). Совокупность уравнений Лагранжа для рассматриваемой механической системы описывает движение этой системы наиболее экономным образом и является основным рабочим аппаратом аналитической механики.  [c.38]


Сопоставляя принципы Даламбера — Лагранжа и Гаусса, Ф. Жур-ден 1 в 1908 г. установил, что существует дифференциальный вариационный принцип механики, который занимает промежуточное место между ними и аналитически выражается соотношением  [c.90]

Аналитические методы, предложенные Лагранжем, обладают весьма большой общностью и математической строгостью их дальнейшее развитие привело к установлению ряда дифференциальных и вариационных принципов механики, из которых основные теоремы механики Ньютона получаются при частных предположениях.  [c.67]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

Среди приближенных методов наибольшее распространениё получили методы, использующие вариационные принципы, и. методы возмущений (асимптотических разложений) по большим или малым значениям параметра или координаты. Полученные в предыдущих параграфах уравнения равновесия стержней и нитей, как правило, являются нелинейными и в общем случае не могут быть решены в аналитической форме за исключением частных случаев. При решении уравнений равновесия обычно используют или численные методы, или приближенные, использующие вариационные принципы механики. При численных методах решения задач усложняются тем, что все задачи механики стержней относятся к двухточечным краевым задачам.  [c.47]

В течение ряда лет автор читал двухсеместровый курс лекций по вариационным принципам механики для аспирантов Purdue University и всякий раз, когда ему приходилось сталкиваться с основными принципами и методами аналитической механики, он ощущал-чувство необычайного подъема. Вряд ли существует еще какая-либо из точных наук, где абстрактные математические рассуждения и конкретные физические доводы так прекрасно гармонируют и дополняют друг друга. Не случайно принципы механики производили огромное впечатление на многих выдающихся математиков и физиков. Не случайно также, что в европейских университетах с давних пор курс теоретической механики обязательно входит в план обучения любого будущего математика и физика. Аналитическая механика — это гораздо большее, чем просто эффективный метод решения динамических задач, с которыми приходится встречаться в физике и технике. Для того чтобы подчеркнуть важность теоретической механики, нет необходимости ссылаться на гироскопы, как бы ни были важны они в физике и технике—само существование общих принципов механики служит ее оправданием.  [c.11]

Однако более фундаментальным, чем все эти особенности, является наличие в аналитической механике объединяющего принципа, который является кульминационным пунктом аналитического подхода. Движение достаточно сложной механической системы описывается больщим числом — иногда даже бесконечным числом — отдельных дифференциальных уравнений. Вариационные принципы аналитической механики образуют единую основу, из которой следуют все эти уравнения. За всеми этими уравнениями скрывается общий принцип, заключающий в себе смысл всей этой совокупности уравнений. Вводится одна фундаментальная величина действие принцип, согласно которому эта величина должна иметь стационарное значение, приводит к полной системе дифференциальных уравнений. Более того, установление этого принципа не связано с какой-либо специальной системой координат. Поэтому и аналитические уравнения движения также инвариантны относительно любых преобразований координат.  [c.27]

По-настоящему хорошей и адекватной истории развития аналитических принципов механики еще не написано. Книга Дюpингa претендующая на изложение этого вопроса, содержит мало истории по существу. Классическая книга Маха о развитии механики- в первую очередь посвящена ее физическим принципам и в меньшей мере ее аналитическому аспекту. Мах столь мало симпатизировал всему, что хоть сколько-нибудь напоминало априорное рационалистическое мышление, что он так и не смог подняться до правильной оценки аналитических методов и их роли в физических науках. Тот факт, что развитие вариационных принципов — это11 великолепной главы эволюции человеческого мышления — никогда не вызывало энтузиазма научных кругов и считалось лишь эффективным методом описания механических явлений, является результатом преобладающего влияния позитивистского типа философии в научном мышлении в течение последних пятидесяти лет. Этим объясняется отсутствие систематического исторического описания это11 ветви математической физики, в котором развитие ее прослеживалось бы вплоть до наших дней .  [c.384]

Лагранж (1736—1813). Достижения Лагранжа, этого величайшего математика XVIII века, во многих отношениях параллельны работам Эйлера. Лагранж вполне независимо от Эйлера получил решение изопериметрических задач, сделав это совершенно новыми методами. Он разработал для этой цели новое, вариационное исчисление. Он также понял преимущество вариационных принципов в связи с той свободой, которую мы получаем, описывая положение механической системы при помощи выбираемой по нашему усмотре-ншо совокупности параметров ( обобщенные координаты ). Если принцип виртуальных перемещений и принцип Далам-бера позволили рассматривать механическую систему как нечто целое, не разбивая ее на изолированные частицы, то уравнения Лагранжа добавили еще одно, чрезвычайно важное свойство — инвариантность относительно произвольных преобразований координат Это позволило выбирать системы координат, удобные для данной конкретной задачи. В своей Аналитической механике (1788) Лагранж создал новое, необычайно мощное оружие для решения любых механических задач при помощи чистых вычислений, без каких бы то ни было физических или геометрических соображений, при условии, что кинетическая и потенциальная энергии заданы в абстрактной аналитической форме. Относясь к этому выдающемуся результату со своей обычной скромностью. Лагранж писал в предисловии к своей книге Читатель не найдет в этой книге рисунков. Развитые мною методы не требуют ни каких бы то ни было построений, ни геометрических или механических аргументов — одни только алгебраические операции в соответствии с последовательными едиными правилами . Лагранж таким образом создал программу и основания аналитической механики.  [c.390]

Позднейшее развитие аналитической механики. Мы проследили историческое развитие вариационных принципов механики. Таким образом, наша задача в части, касаюш,ей-ся основного предмета настоящей книги, завершена. Однако в сооружение величественного здания этой науки внесли свой вклад и многие другие ученые, разрабатывавшие аналитические методы и добавившие к основной теории ценные детали, не говоря уже о решении частных задач. Кратко отметим наиболее яркие из них.  [c.393]

К этому же периоду относится и создание знаменитой Мёсап1дие Analytique , перевод первого тома которой здесь дается. Исходя из основного принципа возможных скоростей, которому Лагранж дал новое доказательство, и пользуясь разработанными им же вариационными методами, Лагранж строит здесь впервые полную систему аналитической механики. В этом классическом труде сосредоточено такое количество фундаментальных идей и блестящих методов, до такой предельной ясности доведено изложение основных законов механики, что и до сих пор эта книга не потеряла своей свежести и может быть использована как классический трактат по аналитической механике. Здесь впервые появляется идея обобщенных координат лагранжев метод рассмотрения жидкости, как материальной системы, характеризуемой большой Подвижностью частиц, уничтожил различие между механикой жидкости и механикой твердого тела, так что общие принципы механики могли быть распространены на гидростатику и гидродинамику. Механика у Лагранжа стала общей наукой  [c.584]


Этот принцип в соединении с принципом живых сил может служить для составления уравнений движения системы в каждом отдельном случае но, как мне кажется, никто еще не подумал о том, чтобы уравнение, выражающее принцип живых сил, применять просто как условное уравнение и применить поэтому метод неопределенных множителей [ ]. Этим путем, вводя непосредственно независимые переменные системы, я прищел к тем общим уравнениям движения, которые даны в Аналитической механике (ч. П, отд. 4) и к которым Лагранж прищел или посредством прямого преобразования координат, или посредством применения общих уравнений вариационного исчисления к этим преобразованиям.  [c.167]

Внутренняя связь между теорией Гамильтона и волновыми процессами давно известна. Эта связь была ясна уже самому Гамильтону, она даже лежала в основе его теоретической механики, которую он строил, исходя из аптики неоднородных сред ). Вариационный принцип Гамильтона может рассматриваться как принцип Ферма для распространения волн в конфигурационном пространстне ( -пространстве) при этом у. Г. выражает здесь принцип Гюйгенса для данных волн. В болынннстве современных изложений эти глубокие идеи Гамильтона теряют, к сожалению, свой яркий наглядный вид и сводятся к значительно более бесцветным аналитическим соотношениям ).  [c.679]

К началу советского периода работа в области аналитической механики оживилась в Казани. Здесь под влиянием традиционных геометрических интересов обратились к общим методам механики, которые можно рассматривать и в геометрической трактовке. Работы А. П. Котельникова были важным вкладом в общую теорию векторов и неевклидову механику. Д. Н. Зеилигер разрабатывал теорию движения подобно изменяемого тела. Е. А. Болотов (1872—1921) занимался вариационным принципом Гаусса. Его исследования были продолжены Н. Г. Четаевым (1902-1959).  [c.280]

Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

Переходя к характеристике развития интегральных вариационных принципов аналитической механики в первой половине XX в., следует заметить, что еще в конце XIX в. были высказаны две противоположные точки зрения по вопросу о правомерности принципов такого рода в динамике неголономных систем. Одна из них принадлежит Г. Герцу и состоит в том, что интегральные принципы неприменимы для неголономных систем, а вторая, противоположная,— О. Гельдеру . Однако это противоречие только кажущееся, ибо в исследованиях названных ученых фигурируют разные способы варьирования. Эти две различные интерпретации понятия варьированного движения,— мы их будем называть соответственно классической и неклассической,— в супщости и определили дальнейший ход развития интегральных принципов аналитической неголономной динамики.  [c.90]

Наконец, румынские ученые Манжерон и Делеану в конце 50-х годов установили наиболее общий дифференциальный вариационный принцип аналитической механики, согласно которому общее уравнение динамики принимает вид  [c.11]

Ньютона, свое завершение получила одновременно с динамикой в трудах Вариньона (1725 г.) и Пуансо (1834 г.) и далее развивалась относительно самостоятельно как статика сооружений и статика сплошной среды. Как известно, И. Ньютон был твердо убежден в независимости и самостоятельности статики и той механики, которую он изложил в Началах . Спустя несколько десятилетий Л. Эйлер продолжал отстаивать мысль о независимости статики и динамики. Я Герман сделал даже попытку ввести для динамики новый термин — фрономия . Эти взгляды вскоре уступили место убеждению в обнхности статики и динамики, как только появились лервые работы оо аналитической механике и в -первую очёредь — принцип Даламбера, принцип возможных перемещений и экстремально-вариационные принципы механики. Статика стала неотъемлемой частью динамики. Под общим флагом принципа Даламбера эти два раздела классической механики объединились в общем учении — кинетике.  [c.91]

Третья часть дисциплин учебного плана относится непосредственно к теоретической механике. Здесь изучаются аналитическая динамика и дополнительные главы теоретической механики, куда рходят, например, вопросы устойчивости равновесия и движения механических систем, вариационные принципы механики, канонические уравнения, канонические преобразования, механика тел переменной массы и др. В этой же части изучается курс по методике преподавания математики и теоретической механики. На семинарах по этому предмету все слушатели выступают с дою1адами по предложенным самими слушателями темам. Такие семинары проходят с повышенной активностью слушателей, ибо они затрагивают наиболее интересные дискуссионные и близкие для преподавателей вопросы преподавания курса теоретической механики и смежных ДИС1ЩПЛИН.  [c.65]


Смотреть страницы где упоминается термин ВАРИАЦИОННЫЕ ПРИНЦИПЫ И АНАЛИТИЧЕСКАЯ МЕХАНИКА : [c.918]    [c.9]    [c.7]    [c.7]    [c.22]    [c.224]    [c.177]   
Смотреть главы в:

Теоретическая механика  -> ВАРИАЦИОННЫЕ ПРИНЦИПЫ И АНАЛИТИЧЕСКАЯ МЕХАНИКА



ПОИСК



59 Вариационные принципы механик

Аналитическая механики

Вариационные принципы механики

Механика аналитическая

Применение вариационных принципов и основных уравнений аналитической механики дискретных систем для описания процессов в термоупругой среде

Принцип вариационный

Принципы механики

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте