Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точно интегрируемые системы

Ниже мы изложим некоторые приближенные методы интегрирования таких уравнений. Они основаны на так называемом локальном подходе, когда рассматриваемая система является в некотором смысле близкой к некоторой, точно интегрируемой. К точно интегрируемым системам относятся линейные системы, а также системы, описываемые в излагаемой ниже теореме Лиувилля.  [c.301]

Точно интегрируемые системы. В соответствии с общей конструкцией, нелинейные уравнения, описывающие точно и вполне интегрируемые динамические системы в двумерном пространстве, получаются путем реализации представления (1.1) парой операторов А , принимающих значения в подпространствах а, а О, произвольной градуированной алгебры Ли .  [c.124]


Здесь — гамильтониан взаимодействия, в котором вместо обобщенных координат и импульсов подставлены соответствующие им динамические переменные, зависящие от момента времени ta с траекториями, описываемыми свободной частью гамильтониана фо аргументы ф/ отвечают этим переменным при гамильтониане в момент времени 1. Таким образом, с помощью теории возмущений устанавливаются явные формулы, связывающие динамические величины, описываемые гамильтонианами и (На квантовом уровне подобное описание динамических систем отвечает представлению взаимодействия.) При этом, что наиболее существенно, для некоторых из них в точно интегрируемых системах ряды теории возмущений Я [ф(/5 д)] является конечными полиномами по X, что при-  [c.178]

Будем предполагать, что гамильтонова система близка к точно интегрируемой по Лиувиллю, так что ее гамильтониан может быть приведен к виду  [c.304]

Общеизвестно, что не существует универсальных аналитических методов решения нелинейных дифференциальных уравнений. Эффективные аналитические методы разработаны лишь для случая, когда фазовое пространство системы представляет собой плоскость или прямую, и для случаев, когда дифференциальные уравнения движения системы мало отличаются от точно интегрируемых.  [c.94]

Уравнения динамики принято разделять на интегрируемые и неинтегрируемые. Интегрируемые системы имеют достаточно много независимых первых интегралов (например, для полной интегрируемости гамильтоновой системы с п степенями свободы достаточно знать п интегралов, попарно находящихся в инволюции см. [3, гл. 4]). В соответствии с этим можно выделить интегрируемые биллиардные системы, обладающие полным набором независимых интегралов. Мы укажем основные известные интегрируемые биллиарды, а также некоторые способы их точного интегрирования и исследования качественных особенностей движения.  [c.99]

Конкретная связь между теорией представлений и точно интегрируемыми нелинейными динамическими системами была установлена и эффективно использована для интегрирования этих систем также сравнительно недавно. Вместе с тем сама  [c.5]

Как уже отмечалось выше, многие из рассматриваемых в книге одно- и двумерных систем как в классической, так и в квантовой областях имеют непосредственное отношение к конкретным задачам теоретической физики. Они описывают физические явления в реальных трех- или четырехмерном пространствах при определенных дополнительных условиях инвариантности, в таких, например, как сферическая симметрия стационарных конфигураций (одномерная задача) и цилиндрическая симметрия (двумерный случай). Кроме того, в многомерном случае существуют объекты, двумерные по своей природе (например, двумерные поверхности), описание которых приводит к точно интегрируемым двумерным динамическим системам.  [c.7]


В настоящем параграфе рассматриваются точно интегрируемые динамические системы, которые возникают из двумерных типа (111.2,8) при определенных ограничениях на зависимость искомых функций от своих аргументов, например, = = о(г++ г = ), и описываются системой обыкновенных дифференциальных уравнений (111.2.13). Их решения в классической области, как уже отмечалось ранее, могут быть получены из общих решений соответствующих двумерных систем путем подходящего выбора асимптотических функций, приводящего в окончательном выражении к правильной зависимости от одной (временной) переменной. Именно таким образом были получены явные формулы для решений одномерной обобщенной цепочки Тода (IV. 1.49). (В квантовой области ситуация существенно изменяется, поскольку коммутационные соотношения в одномерном и двумерном случаях разные.)  [c.181]

Гамильтониан (1.3.6) был получен для модели маятника. Однако оказывается, что такого вида гамильтониан получается почти во всех близких к интегрируемым системах, в которых имеет место резонанс между степенями свободы. В окрестности значений переменных действия, соответствующих точному резонансу, разложение неинтегрируемой части гамильтониана в ряд Фурье дает члены.  [c.42]

Здесь мы дадим количественную теорию явления синхронизации автоколебательных систем на примере лампового генератора, принципиальная схема которого проведена на рис. 16.2. Как довести исследование подобной конкретной нелинейной динамической системы до чисел Один пример мы уже рассматривали — это автоколебания в системе, где удалось разделить быстрые и медленные движения. Формально такое разделение можно сделать, если в уравнениях при старшей производной имеется малый параметр. Его присутствие позволяет во многих случаях (не только, конечно, при анализе автоколебаний) понизить порядок исходной системы — проинтегрировать ее по участкам быстрых и медленных движений. Следует заметить, что большинство методов, позволяющих довести решение конкретной нелинейной задачи до конца без применения численного счета на ЭВМ, связано с наличием в системе малого параметра, т. е. фактически с близостью исследуемой системы к другой, более простой, а точнее, интегрируемой (хотя бы и приближенно). Другой случай, когда удается решить задачу аналитически, — он наиболее часто встречается в физике и различных приложениях — это, когда исходная нелинейная система близка к линейному осциллятору или нескольким осцилляторам. При этом решение близко к набору синусоид, однако их параметрами, очевидно, будут уже не числа, а медленно изменяющиеся функции времени.  [c.330]

Рассмотренные выше задачи о ламинарных установившихся течениях решались точными или приближенными аналитическими методами. Путем надлежащего использования граничных условий Б этих задачах удавалось упростить уравнения движения и привести их к интегрируемому виду. Существует немало других задач, решения которых получены тем же путем и находят важные технические приложения. Однако современное развитие инженерной практики требует решения и более сложных задач, в которых приходится учитывать все члены уравнений Навье—Стокса, что не позволяет их решить в квадратурах. Широкие возможности открывает использование ЭВМ и применение численных методов решения. Последние основаны на замене (аппроксимации) дифференциальных уравнений уравнениями в конечных разностях, которые решаются на ЭВМ как система алгебраических уравнений. Разработаны и успешно применены к различным гидродинамическим задачам несколько численных методов, причем в некоторых из них используются не только эйлеровы, но и лагранжевы переменные.  [c.318]

В механике тщательно изучаются системы, уравнения движения которых точно интегрируются. Это связано с тем, что интегрируемые задачи часто используются в качестве невозмущенных в более сложных, но реальных и нужных задачах.  [c.388]

В несколько раз больше амплитуды автоколебаний в точной системе. Например, при D = 0,22 и В --= 0,13 амплитуда в обеих системах была одинаковой, если интенсивность возбуждения П в упрощенной системе была настроена приблизительно в два раза меньшей. Учитывая, что упрощенные уравнения также не интегрируемы, даже для системы без рассеивания энергии, замену более полноценной аппроксимации (2) первыми членами ряда (10) не рекомендуем.  [c.86]


Однако бывают случаи, когда силы зависят не только от положения, но еще и от скорости и времени или зависят только от скорости или от времени. Например, в электродвигателях (кроме синхронных машин переменного тока) развиваемый ими движущий момент зависит, как правило, от угловой скорости их ротора точно так же в центробежных насосах и вентиляторах потребляемый момент изменяется в квадратичной зависимости от угловой скорости (о механических характеристиках машин см. п. 27). В этих случаях теорема об изменении кинетической энергии не может свести задачу i интегрируемым дифференциальным уравнениям (так как работа сил не может быть определена без знания самого закона движения), поэтому задача определения движения машины должна в таких случаях строиться на решении дифференциального уравнения движения системы в обобщенных координатах, соответствующего обобщенным силам или обобщенным моментам, т. е. так называемого дифференциального уравнения Лагранжа 2-го рода. Для установления этого уравнения воспользуемся зависимостью (48). Из нее для бесконечно малого промежутка времени получим  [c.251]

Наконец, все более становилось очевидным, что нужен также и новый подход к решению возникших задач. Действительно, пока внимание исследователей сосредоточивалось на изыскании новых случаев интегрируемости уравнений движения твердого тела, механическая модель изучаемой системы оставалась одной и той же. Она была определена еще Эйлером одно твердое тело, неподвижная точка, равномерное гравитационное поле. Этой модели соответствовали определенные уравнения движения. Задача сводилась к отысканию точных математических решений при различных соотношениях параметров уравнений и различных начальных условиях.  [c.143]

Следствие. Каждая вполне интегрируемая гамильтонова система в окрестности инвариантных торов допускает точное представление Гейзенберга.  [c.107]

Если гамильтонова система (9.11) алгебраически вполне интегрируема, то почти все ее решения будут мероморфными функциями времени. Точнее, уравнения (9.11) допускают решения вида  [c.117]

Как известно, система функций Лагерра полна в пространстве функций 2 Ю> и поэтому любая, интегрируемая в квадрате импульсная переходная функция к (т) может быть сколь угодно точно аппроксимирована линейной комбинацией вида  [c.25]

Отметим также, что в этой проблеме четыре надлежащим образом выбранные окрестности четырех основных периодических движений покрывают целиком многообразие М в самом деле, оба семейства движений вокруг эллипса, семейство движений поперек эллипса и периодическое движение вдоль большой оси вместе исчерпывают все движения системы. Эти факты подсказывают нам следующее (не вполне точное) определение интегрируемости, основанное на некотором локальном и на некотором нелокальном свойстве.  [c.255]

Оказалось, что все точно решаемые, так называемые интегрируемые задачи принадлежат к классу специально подобранных сильно упрощенных задач. Большая же часть механических систем не интегрируема. Это не просто неумение найти решение в конечном виде, а факт сложного поведения динамической системы, поведения, похожего на хаотическое, случайное. Такое поведение, получившее название динамического хаоса, показано и проанализировано на большом числе частных примеров и представляется достаточно универсальным. Близкие траектории такого движения разбегаются в фазовом пространстве, т.е. они локально неустойчивы. Поэтому для описания фазового портрета, наряду с точным расчетом траекторий с помощью ЭВМ, могут быть использованы и статистические методы, если нас интересует поведение системы в течение достаточно длительного времени.  [c.339]

Дифференциальные уравнения, в том числе уравнения Гамильтона, принято разделять на интегрируемые и неинтегрируемые. Если, однако, мы попытаемся сформулировать точное определение интегрируемости, то оказываются возможными многие различные определения, каждому из которых присущ известный теоретический интерес . В этом параграфе мы дадим краткий перечень различных подходов к интегрируемости гамильтоновых систем, не забывая при этом указания Пуанкаре, что система дифференциальных уравнений может быть лишь в большей или меньшей степени интегрируемой .  [c.121]

Применение операции сжатия простых алгебр Ли (как конечно-, так и бесконечномерных конечного роста) позволяет получить целый ряд других нелинейных интегрируемых систем, пользуясь симметрийными свойствами их матриц Картана (см. п. 4а, IV. 1). Действительно, такая операция соответствует переходу от алгебры к ее простой подалгебре снабженной трансляциями, и так как исходная система (III. 1.10) вполне интегрируема, то предельный переход по функциям х/ и л ,-, скажем, Xj- x j, х -—х х, относительно которых система (III. 1.10) — симметричная (xj xi), приводит также к точно интегрируемой системе.  [c.171]

В. Е. Захаров и А. Б. Шабат показали (1971), что ур-ние (7) также является точно интегрируемым в рамках метода обратной задачи рассеяния с помощью вспо-могат. переопределённой системы линейных ур-ний типа (5), (6) для многокомпонентной (векторной) ф-ции Р. Следствием точной интегрируемости является наличие точных многосолитонных решений. Как и в случае ур-ния КдФ, эти решения описывают чисто упругие столкновения С. с сохранением формы, амплитуды и скорости. Единств, следствием столкновения являются фазовые сдвиги — изменения параметров Фд > и. Хд.  [c.573]

В системах, далёких от точно интегрируемых, взаимодействия С. оказываются глубоко неупругими. Так, неинтегрируемое релятивистски инвариантное волновое ур-ние  [c.574]

ТОЧНО РЕШАЕМЫЕ МОДЕЛИ квантовой теории поля и стапистичсской ф и з и к и (вполне интегрируемые системы), матем. модели физ. систем, допускающие точное вычисление собсзв. функций и собств. значений гамильтониана таких систем, а также статистич. суммы для них как правило, это системы низкой пространственной размерности (одно- или двумерные см., напр., Двумерные модели квантовой теории поля). Т. р. м, имеют принципиальное значение в физике фазовых переходов.  [c.150]


В первых трех главах содержится решение проблемы Пуанкаре о несуществовании дополнительного аналитического первого интеграла уравнений вращения тяжелого несимметричного волчка, поставленной в знаменитых Новых методах небесной механики . В четвертой главе рассмотрены динамические эффекты, препятствующие интегрируемости несимметричного волчка рождение бесконечного числа невырожденных долгопериодических решений и расщепление сепаратрис. Впоследствии автор этой книги связал два указанных явления, оба из которых восходят к Пуанкаре. Мы приводим в приложении доклад В. В. Козлова на семинаре в Институте машиноведения РАН, в котором демонстрируется превосходство методов Пуанкаре над стандартными методами теории колебаний при изучении периодических колебаний в системах Дуффинга. В пятой главе приведено решение старой проблемы Пенлеве-Голубева о связи между ветвлением решений уравнений динамики в комплексной плоскости времени и существованием новых однозначных первых интегралов. Эти результаты дали сильный толчок исследованиям по проблеме точной интегрируемости уравнений движения. Современное состояние этой теории изложено в недавней книге В. В. Козлова Симметрии, топология и резонансы в гамильто-  [c.9]

Все изучаемые системы объединяет наличие нетривиальной группы внутренних симметрий, генерируемой алгеброй Ли — Беклунда. Это, в конечном счете, и позволяет получить их явные решения в терминах теории представлений алгебр и групп Ли, которая играет существенную роль для всех без исключения точно интегрируемых динамических систем.  [c.5]

К настоящему времени существует гипотеза о связи между свойствами группы внутренней симметрии и критериями интегрируемости. Именно система точно интегрируема, если алгебра Ли — Беклунда конечномерна, и вполне интегрируема, если алгебра бесконечномерна, но обладает конечномерными (вырожденными) представлениями. Все рассмотренные в книге примеры не противоречат этой гипотезе.  [c.9]

Развиваемый в книге подход связан с методом обратной задачи рассеяния, грубо говоря, следующим образом. Как уже отмечалось выше, точно и вполне интегрируемые системы существенно различаются по свойствам их групп внутренней симметрии. Следствием этого является то обстоятельство, что в тех случаях, когда в представлении типа Лакса спектральный параметр исключается преобразованием из группы внутренней симметрии, метод обратной задачи рассеяния оказывается бессилен, тогда как развиваемые в этой книге методы приводят к успеху. Справедливо и обратное если спектральный параметр нельзя исключить указанным способом, то методы обратной задачи рассеяния приводят к нетривиальному спектру солитоноподобных решений, а развиваемый нами подход позволяет получить решение задачи Гурса соответствующей системы в виде бесконечных абсолютно сходящихся рядов.- Вопрос о выделении солитонных решений (из общих) при этом остается открытым. Таким образом, эти два подхода являются взаимодополняющими.  [c.9]

В настоящем параграфе методы теории возмущений применяются для построения явных выражений для рещений точно интегрируемых динамических систем. При этом важно подчеркнуть, что речь идет не о каких-либо приближенных результатах, а о точных выражениях, возникающих в результате суммирования рядов теории возмущений, которое для рассматриваемых систем удается довести до конца. Тем самым, преобразование Беклунда, осуществляющее связь нелинейной и соответствующей линеаризованной систем, приобретает явную формулировку. Им является каноническое преобразование, связывающее рещения некоторой нелинейной динамической системы с рещениями системы, возникающей из исходной при нулевом значении постоянной взаимодействия . (В простейшем случае в роли нелинейной и линеаризованной указанным образом систем выступают уравнения Лиувилля и Лапласа соответственно.)  [c.177]

Глава 4 содержит краткий обзор различных подходов к проблеме интегрируемости уравненнй движения и некоторые наиболее общие и эффективные методы их интегрирования. Указа-11Ы разнообразные примеры проинтегрированных задач, составляющих золотой фонд классической динамики. Материал этой гл 1ВЫ используется в главе 5, посвященной одному из наиболее результативных разделов механики — теории возмущений. Основная задача теории возмущений — исследование задач механики, мало отличающихся от задач, точно проинтегрированных. Элементы этой теории (в частности, широко известный и применяемый принцип усреднения ) возникли в небесной ме-> анике в связи с попытками учесть взаимные гравитационные возмущения планет Солнечной системы. К главам 4 и 5 примыкает глава б, в которой исследована принципиальная возможность интегрирования уравненнй движения (в точно определенном смысле). Оказывается, интегрируемые системы являются редким исключением и это обстоятельство повышает роль приближенных методов интегрирования, изложенных в лаве 5. Классическим вопросам небесной механики посвящена "1торая глава. В ней рассмотрена интегрируемая задача 2-х тел,  [c.9]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]


Для доказательства воспользуемся прямоугольными координатами. Если система голономная, то имеется i уравнений условий, которые умножением на соответствующие множители и сложением в необходимом порядке получат интегрируемую форму, т. е. их левые части совпадут с точными диффСрен-  [c.523]

Обширный класс интегрируемых Н. у. м. ф. составляют ур-ния, к к-рым применим обратной задачи рассеяния метод. Для этих ур-ний, к к-рым относятся, в частности, перечисленные выше универсальные гамильтоновы системы, возможно явное вычисление большого кол-ва точных решений, в т. ч. описываюнщх солитоны и их взаимодействия. При помощи метода обратной задачи удается вычислять инстантонвые решения ур-ний Янга — Миллса, а также найти многочисленные точные решения ур-ний Эйнштейна,  [c.316]

Труды Ж. Даламбера по гидродинамике начали появляться почти одновременно с гидродинамическими исследованиями Эйлера. Сочинение Даламбера 1744 г. Трактат о равдовесии движения жидкостей по словам автора, пронизан стремлением соединитБ геометрию (математику, а точнее, аналитические методы) с физикой (результатами опытов). Даламбер занимался экспериментальными исследованиями сопротивления движению тел в жидкости в связи с запросами кораблестроения. Его подход ко всем задачам механики системы и, в частности, к вопросам гидромеханики базируется на основной идее, выраженной в его знаменитом принципе, согласно которому законы динамики могут быть представлены в форме уравнений статики. В упомянутом трактате этот метод применяется к разнообразным тонким вопросам движения жидкости в трубах или сосудах. Даламбер исследовал законы сопротивления при движении тел в жидкостях и указал интегрируемый в квадратурах случай. Процесс образования вихрей и разреженности за движущимся телом он объяснял вязкостью жидкости и ее трением о новерх-186 ность обтекаемого тела.  [c.186]

В этой книге впервые предпринята попытка систематизировать результаты по проблеме интегрируемости гамильтоновых систем, полученные за последние 10-15 лег, а также дать современное изложение классических результатов по этой тематике. Структура книги такова. Во введении дан исторический обзор исследований по проблеме интегрируемости уравнений динамики. Основы гамильтоновой механики изложены в гл. I. Глава II посвящена методам точного интегрирования уравнений Гамильтона в ней обсуждаются различные аспекты понятия интегрируемой гамильтоновой системы. В гл. III указаны грубые препятствия к интегрируемости, выраженные через топологические инварианты конфигурационного пространства. Обсуждение резонансных явлений в связи с проблемой интегрируемости содержится в гл. IV-VIIL Изложенные методы позволяют дать строгие доказательства неинтегрируемости многих актуальных проблем динамики. Особое место занимает обсуждение механизма стохастизации гамильтоновых систем при малом изменении функции Гамильтона.  [c.7]


Смотреть страницы где упоминается термин Точно интегрируемые системы : [c.221]    [c.574]    [c.576]    [c.101]    [c.366]    [c.241]    [c.270]    [c.9]    [c.5]    [c.48]    [c.255]    [c.58]   
Смотреть главы в:

Групповые методы интегрирования динамических систем  -> Точно интегрируемые системы



ПОИСК



Интегрируемые системы

Применение методов теории возмущений для нахождения явных решений точно интегрируемых систем

Решения точно интегрируемых систем (задача Обобщение для систем с фермионными полями

Точно интегрируемые динамические системы в квантовой области



© 2025 Mash-xxl.info Реклама на сайте