Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа деформации для изотропного тела

Работа деформации для изотропного тела.  [c.82]

РАБОТА ДЕФОРМАЦИИ ДЛЯ ИЗОТРОПНОГО ТЕЛА 83  [c.83]

Все сказанное остается правильным лишь для изотропного тела. Только для изотропной среды мы можем сделать вывод об отсутствии перекосов при простом растяжении. Мало того, все рассуждения могут быть приняты только в случае линейной зависимости между напряжениями и деформациями, так как теорема взаимности работ верна лишь для линейных систем.  [c.42]


Пластическое формоизменение большинства металлов в холодном состоянии обычно сопровождается упрочнением (увеличением сопротивлению деформирования). При выборе пластической постоянной можно воспользоваться либо кинематическим, либо энергетическим критериями упрочнения, которые для изотропного тела являются эквивалентными [3]. В первом случае мерой упроч нения является накопленная (эквивалентная) пластическая деформация (параметр Одквиста) [1], учитывающая историю формоизменения материальной частицы. Однако более простым оказывается способ вычисления среднего значения пластической постоянной на основе энергетического критерия упрочнения. При этом способе за меру упрочнения принимается удельная работа пластической деформации а=СТе( й р) [1]. Эта зависимость обычно получается из опытов на одноосное растяжение или сжатие.  [c.101]

Для изотропного тела общую удельную работу деформации а можно разложить на удельную работу деформации, связан-  [c.56]

Как это многократно подчеркивалось в ряде наших дальнейших работ [3], такое положение могло бы иметь место при разрушении твердого тела с идеальной, бездефектной структурой. Действительно, для изотропного тела, лишенного дефектов, однородное напряженное состояние, возникающее при всестороннем растяжении и описываемое шаровым тензором напряжений и деформаций, с возрастанием интенсивности напряже-  [c.7]

Для изотропных тел удельная дополнительная работа деформации первого рода будет функцией только инвариантов тензора напряжений. Рассмотрим далее прираш,ение удельной энергии деформации в виде  [c.130]

Неоднородность структуры стеклопластика определяет особенности деформирования даже при простых случаях нагружения по сравнению с изотропными телами. Поэтому необходимы исследования особенности работы стеклопластика при растяжении, сжатии, изгибе и других видах деформации для расчетов на прочность и определения степени влияния различных факторов на эти показатели.  [c.215]

Как известно, упругие свойства всяких тел характеризуются удельной энергией их деформации. Выведем ее выражение для оболочки, выполненной из трансверсально-изотропного материала, поверхность изотропии которой совпадает со срединной поверхностью. Исходим из общей формулы для приращения удельной механической работы деформации в теории упругости  [c.34]


Автор повсеместно подчеркивает большое значение достижения высокой точности в эксперименте и умения правильно оценивать ее уровень. При этом он считает важными и такие экспериментальные исследования, в которых не наблюдаются новые явления, но существенно повышается точность измерений, что способствует более глубокому пониманию явления и более правильной оценке его практического значения. В качестве примера экспериментаторов, значение работ которых состояло в основном в повышении точности результатов, автор книги приводит Герберта Томлинсона. Интересно отметить, что значительную роль в повышении точности измерения деформаций сыграли многочисленные эксперименты по определению значения коэффициента Пуассона для разных материалов, которые в обилии ставились в связи с дискуссией по поводу числа независимых постоянных упругости у изотропного тела. Хотя исследования Грина давали исчерпывающий ответ на этот вопрос, многие ученые в XIX веке не считали его решенным. С позиций XX века дискуссия была излишней, однако она явилась причиной постановки тончайших опытов, представляющих самостоятельный интерес в части достижения высокой точности измерения деформаций.  [c.12]

А. Хааром и Т. Карманом, получил определяющие уравнения для идеально пластического тела в виде конечных соотношений связи тензоров напряжения и деформаций. А. Надаи обобщил эти уравнения Генки на случай изотропного тела с упрочнением. Как и в работе Генки, границы применимости конечных уравнений связи тензоров напряжения и деформации для описания пластичности при этом четко не определялись. Ясность в этом вопросе была достигнута позднее, после появления в сороковых годах ряда работ А. А. Ильюшина (см. п. 2.5.).  [c.81]

В заключение следует указать, что поскольку для следующих закону Гука анизотропных тел самого произвольного типа удельная энергия деформации является однородной квадратичной формой от компонентов деформации, для них остается справедливым ряд положений, доказанных ранее для линейно упругих изотропных тел. В частности, остается справедливой формула (12.6) и вытекающая из нее теорема Клапейрона (13.4), а также обобщение этой теоремы (13.3). Остается справедливой и теорема взаимности работ (что было показано в 15) и сохраняются в силе рассуждения при доказательстве теоремы единственности. Рассмотрение задач теории упругости анизотропных тел (в классической постановке) производится аналогично случаю изотропных тел, только при выражении напряжений через деформации приходится пользоваться не формулами (6.2) или (6.6), а более сложными линейными зависимостями (19.2), причем в последних (оставаясь в рамках допущений классической теории упругости) надо положить В дальнейшем заниматься  [c.227]

Упрочняющееся тело. Современные конструкционные металлы заметно упрочняются схема идеального упруго-пластического тела тогда непригодна. В этих случаях обычно исходят либо из уравнений Прандтля — Рейсса при условии изотропного упрочнения, либо из уравнений деформационной теории при законе единой кривой (интенсивность касательных напряжений — функция интенсивности деформаций сдвига). В Советском Союзе значительное развитие получили решения, основанные на уравнениях деформационной теории. Для зарубежных работ характерно известное недоверие к использованию деформационной теории, хотя и не отрицается ее практическое значение. Закон изотропного упрочнения пригоден лишь при сравнительно несложных путях нагружения. Еще в более узких пределах приемлема схема единой кривой. Поэтому решение краевых задач на основе обеих теорий ограничено рамками достаточно простого нагружения. Более точно формулировать это условие не представляется возможным. Сопоставление имеющихся решений, найденных по обеим теориям, обычно свидетельствует о небольших расхождениях.  [c.115]

Внутренние напряжения в твердых телах определяются деформациями тела, подобно тому как давление в жидкости определяется ее сжатием. Связь между напряжениями и деформациями может быть разного типа. Может оказаться, что напряжение в данный момент зависит от того, какие деформации испытывало тело за всю его историю (аналогично жидкостям с релаксацией), а может оказаться, что напряженное состояние в данный момент определяется только деформацией в этот самый момент если при этом внутренняя вязкость отсутствует, то работа в теле при циклическом деформировании тела (с возвращением к исходному состоянию) равна нулю. Более того будем заниматься только телами с линейной упругостью, т. е. телами, для которых связь между компонентами напряжения и деформации линейна. Наконец, ограничимся только изотропными твердыми телами. Требование линейности исключает большие значения тензора деформации, а также исключает среды типа порошков, для которых сжатие вызывает напряжения, но растяжение приводит только к нарушению контакта между частицами.  [c.441]


Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Коши ( au hy) Огюстен Луи (1789 - 1857) — известный французский математик, один и.э основоположников теории аналитических функций. Окончил Политехническую школу (1807 г.), Школу дорог и мостов (1810 г.) в Париже. В 1810 1813 гг. работал инженером на постройке порта в Шербуре. С 1816 г. профессор Политехнической школы, Сорбонны, Колеж де Франс (1848 - 1857 гг.). Написал более 700 фундаментальных работ по теории функций, математическому анализу, математической физике. Создал теорию функцнй комп-лексного переменного. Заложил основы теории сходимости рядов. Ему принадлежит постановка одной из ос новных задач теории дифференциальных уравнений, метод интегрирования уравнений с частными произвол ными первого порядка. В теории упругости ввел понятие напряжения, расширил понятие деформации и ввел соотношения между компонентами тензора напряжений и тензора деформаций для изотропного тела. Исследовал задачи о деформации стержней, в частности задачу о кручении. В оптике развил математические основания теории Френеля и дисперсии.  [c.242]

Удобными для практического использования являются смешанные инварианты, это отмечал В. В. Новожилов в работе [137] К , С, ш — обобщенные модули объемного сжатия, сдвига и фаза подобия девиаторов тензоров напряжений и деформаций. В Изотропном теле эти тензоры соосны, но их деви-аторы в общем случае не подобны.  [c.278]

Одноосное напряженное состояние. Уравнение состояния для неоднородно-стареющего упругоползучего изотропного тела при одноосном напряженном состоянии в случае малых деформаций можно получить на основе работ 118, 19].  [c.12]

Использование конечно-элементной дискретизации для определения полей упругопластических напряжений по теории течения описано в работе [17]. Модель упругопластического изотропного тела по теории мальк упругопластических деформаций при активном нагружении связывает тензоры напряжений о и деформаций е физическими соотношениями, которые в соответствии с (2.48) имеют вид [12]  [c.69]

В своей книге по теории упругости Ламе сообщает о другом вкладе своего бывшего коллеги в эту науку, который он именует теоремой Клапейрона. Согласно этой теореме сумма произведений приложенных к телу внешних сил на компоненты смещений по направлениям этих сил в точках их приложения равна удвоенному значению соответствующей энергии деформации тела. По-впдимому, эта теорема была сформулирована Клапейроном за много времени до выхода в свет книги Ламе, и ею, вероятно, отмечается первый случай вывода общего выражения для энергии деформации изотропного тела. В 1858 г. Клапейрон был избран в члены Dpaнцyз кoй Академии наук. Он продолжал свою работу в Академии и в Школе мостов и дорог до своей смерти в 1864 г.  [c.145]

Осветим бегло содержание книги Нейманна. В первых пяти главах он выводит основные уравнения теории упругости изотропного тела, вводя понятие компонент напряжения и деформации и устанавливая соотношения между ними через две упругие постоянные. Его обозначения для компонент напряжения были впоследствии приняты многими авторами в частности, их принял Ляв (А. Е. Н. Love). В следующих трех главах дается вывод основных уравнений с помощью гипотезы о молекулярном строении твердых тел. Излагаются работы Навье и Пуассона. Выводятся уравнения для неравномерного распределения температуры, исследуется теорема об единственности решений уравнений упругости. Следующая часть книги посвящена приложениям основных уравнений к частным задачам. Глава, в которой описывается  [c.303]

В основе деформационной теории пластичности лежат гипотезы, предложенные Хубером [397], Мизесом [423], Хенки [395 и обобщенные на случай материала с упрочнением Надаи [200]. Она предполагает, что для упругопластических тел можно установить зависимости между напряжениями и деформациями, подобно закону Гука для упругих тел. Развитие и обоснование теории малых упругопластических деформаций связано с работами Ильюшина, поэтому часто теорию малых упругопластических деформаций называют теорией пластичности Ильюшина. Здесь принимается, что при простой активной деформации первоначально изотропного материала, свойства которого не зависят от третьего инварианта тензора напряжений, справедливы следующие три гипотезы.  [c.42]


Линза представляет собой сплошное тело. При наложении температурного поля оправа не позволяет линзе свободно изменять свои размеры, что приводит к возникновению в них напряженно-д )ормированного состояния. При этом вся система будет находиться в равновесии. После изменения на некоторую величину температура считается постоянной. Для сплошных тел, находящихся в равновесии, в теории упругости формулируются два принципа — начало возможных перемещений и начало возможных изменений напряженного состояния, которые устанавливают связь между компонентами напряжений и производными от удельной энергии деформации по компонентам деформаций. Это позволяет вывести в общем виде соотношения между напряжениями и деформациями в изотропных упругих телах [26 28 33 34]. Если решение задачи основывается на принципе возможных перемещений (основная задача, или принцип Лагранжа), то в результате получаются перемещения для любой точки тела, для которого производится решение. Принципиально решения на основе обоих принципов равнозначны, оба решения базируются на приращении работы деформации, однако оптиков в большей степени интересует не само напряженное состояние, а то искажение формы детали, которое оно вызывает. Поэтому для расчета перемещений любых точек  [c.157]

Равенства (34) показывают, что прямоугольный параллелепипед, изготовленный из материала с общей анизотропией, при одноосном однородном напряженном состоянии превращается в не-прямаугольный параллелепипед (на рис. 1, а показано тело, для которого плоскость является плоскостью симметрии). В случае изотропного материала прямоугольный параллелепипед остается прямоугольным (рис. 1, б). Эти различия в поведении анизотропных и изотропных материалов при одноосном напряженном состоянии вызывают некоторые трудности при определении механических характеристик композиционных материалов в направлении, не совпадающем с осью симметрии. Образец, обычно используемый при таких испытаниях, представляет собой длинную полоску (отношение длины к ширине равно - 5—10), вырезанную под некоторым углом к оси симметрии из элементарного армированного слоя или слоистого материала. При одноосном нагружении в продольном направлении образец ведет себя как анизотропное тело с плоскостью упругой симметрии, совпадающей с плоскостью образца, т. е. стремится принять в этой плоскости форму параллелограмма. Захваты, в которых закрепляют образец, препятствуют его свободной деформации, сохраняя пер-воннчальное. направление закрепленных кромок. Как показано в работе Пагано и Халпина [45], в плоскости образца при этом возникает изгибающий момент и при деформировании образец принимает 1У-образную форму (рис. 2).  [c.24]

Многочисленные применения в течение более чем 30 лет метода Уоррена — Авербаха [76—78] и вариантного метода Вильсона [80, 81] привели к огромному количеству рентгеновских экспериментальных данных. Однако интерпретация уширения рентгеновских линий этими методами была недостаточно эффективной. Получаемые при этом значения среднего размера областей когерентного рассеяния О и среднего квадрата деформации (е )у д трудно связываются с микроструктурой деформированных твердых тел, например, с плотностью и параметрами распределения дислокаций и дисклинаций. Возможности метода Уоррена — Авербаха были проверены при исследовании распределения интенсивности рассеянных рентгеновских лучей цилиндрическими кристаллами, на оси которых расположена одна дислокация, в нескольких ранних работах Вилькенса [82—85]. При этом вычислялись коэффициенты Фурье кривой распределения интенсивности на дебаеграм.ме для отражений вплоть до третьего порядка. Рассмотрение в [82] проводилось в приближении линейной изотропной теории упругости для винтовой дислокации. Обработка коэффициентов Фурье по методу Уоррена — Авербаха показала, что получаемый размер блоков отличается от размера Я блоков неискаженного цилиндрического кристалла. Это обусловлено тем, что функция распределения Рп п) деформаций решетки е , которые расположены на расстоянии па в пределах области когерентности, имеет длинные хвосты , не соответствующие нормальному закону распределения. Эти хвосты функции Рп (е ) вызваны большими деформациями решетки вблизи линии дислокации. Кроме того, среднеквадратичные деформации (е ), полученные усреднением е , которое соответствует винтовым дислокациям, заметно отличаются от (е )у д, найденных методом Уоррена — Авербаха. Так, при ( а// ) >0,1 различие получается почти в 2 раза, причем (е,г)Хе у д- При л-)-О (е5->  [c.232]


Смотреть страницы где упоминается термин Работа деформации для изотропного тела : [c.507]    [c.93]    [c.185]    [c.84]    [c.263]    [c.274]    [c.648]    [c.39]    [c.55]    [c.379]    [c.268]   
Смотреть главы в:

Курс теории упругости Изд2  -> Работа деформации для изотропного тела



ПОИСК



Деформации изотропных тел

Изотропность

Работа деформации

Тело изотропное,



© 2025 Mash-xxl.info Реклама на сайте