Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постоянная пластическая

Рис. 19. Диаграмма постоянной пластической деформации для материалов А, В, С 1 — без особых отверстий (диаметр диска 600 мм пластическая деформация в осевом отверстии 0,005 мм/мм) Рис. 19. Диаграмма постоянной пластической деформации для материалов А, В, С 1 — без особых отверстий (<a href="/info/296571">диаметр диска</a> 600 мм <a href="/info/1487">пластическая деформация</a> в осевом отверстии 0,005 мм/мм)

Это означает, что, хотя полная деформация поддерживается постоянной, пластическая деформация образца все еще увеличивается со скоростью, пропорциональной скорости релаксации напряжений. Происходит процесс необратимого перехода энер-  [c.34]

На рис. 8 представлены зависимости шероховатости от величины пластической деформации и толщины стенки втулки из стали 20 при протягивании с натягом, равным 0,1 мм. Характер кривых изменения аналогичен характеру кривых, представленных на рис. 2. При постоянной пластической деформации вначале шероховатость поверхности по мере увеличения толщины стенки уменьшается, а затем увеличивается. Рост высоты микронеровностей внутренних поверхностей втулок, вызванный началом шелушения, происходит при достижении определенной величины деформации и начинается тем раньше, чем больше толщина стенки (кривые 2 и 3).  [c.15]

Приведенные соотношения позволяют утверждать, что с точностью до постоянной пластический потенциал равен квадрату интенсивности напряжений Ф (о у) = о . Данную поверхность в системе координат 02, Од назовем поверхностью пластического потенциала. Она имеет такую же форму, как и поверхность начала пластического течения. Вектор приращения пластических деформаций перпендикулярен поверхности пластического потенциала. Аналогично теории пластического течения можно ввести понятие пластического потенциала и в теорию малых упругопластических деформаций. Тогда для случая несжимаемого материала имеем  [c.132]

Производная характеризует изменение мгновенного предела текучести с увеличением температуры при постоянной пластической деформации (линии АС на рис. 3.3, а, б). Для конструкционных материалов при повышении температуры предел текучести уменьшается, т. е. всегда <0.  [c.147]

Одна из главных задач машиностроения — дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей. Особенно большое внимание уделяется чистовым и отделочным технологическим методам обработки, объем которых в общей трудоемкости обработки деталей постоянно возрастает. Наряду с механической обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергий. Весьма прогрессивны комбинированные методы обработки (рис. 6.1).  [c.253]


Для процесса возникновения и эволюции ячеистой дислокационной субструктуры характерны следующие закономерности [211, 242, 320, 357]. Образование ячеистой структуры происходит, начиная с некоторой критической деформации. Для описания ячеистой структуры обычно используют такие параметры средний размер ячейки, распределение ячеек по размерам, ширина стенок ячейки, разориентация соседних ячеек, плотность дислокаций в стенках ячеек и в объеме. Все указанные величины изменяются с ростом пластической деформации. С повышением пластической деформации еР диаметр ячеек d уменьшается, пока не достигает некоторого предельного значения — обычно 0,25—3 мкм. Все остальные перечисленные параметры ячеистой структуры, интенсивно изменяясь с ростом на начальных этапах деформирования ячеек, при дальнейшем деформировании стабилизируются и приближаются к некоторым характерным значениям стабилизируются плотность дислокаций в границах ячеек, толщина стенок ячеек и дисперсия функции их распределения по размерам. Поэтому увеличение напряжений, необходимых для распространения микротрещин через границы ячеистой структуры, по всей видимости, в первую очередь обусловлено уменьшением размера ячеек. В изложенной ниже модели принято, что плотность дислокаций в стенках ячеек постоянна, а увеличение общей плотности дислокаций, обусловленное пластической деформацией, приводит к образованию новых границ и тем самым к уменьшению диаметра ячеек.  [c.78]

Второй из названных структурных процессов — увеличение разориентировки существующих в зерне структурных составля-щих — может быть смоделирован в тех же терминах. На начальных стадиях пластического деформирования дислокации налипают на границы крупных структурных элементов до некоторой, как можно условно считать постоянной, плотности. При дальнейшем деформировании дислокации оседают на других границах, которые до этого были не задействованы и которые принадлежат более мелким структурным составляющим (рис. 2.11). Таким образом, происходят последовательное выделение границ структурных элементов различного масштаба с постоянной плотностью дислокаций на них и соответственно уменьшение диаметра эффективного структурного блока (границы которого могут являться препятствием для нестабильно развивающихся микротрещин) до некоторого предельного значения, определяемого исходно существующей внутризеренной структурой (например, до ширины перлитной колонии).  [c.78]

Как указывалось выше, общие ОН обусловлены общей остаточной деформацией всей зоны перфорации, осредненной по толщине коллектора. Расчет общих ОН представляет собой решение плоской упругопластической задачи, единственным возмущающим фактором в которой являются постоянные начальные деформации 8 , равные осредненным остаточным пластическим деформациям. Очевидно, что перфорированная зона в плоской задаче имеет большую податливость (при рассмотрении этой зоны в континуальной постановке), чем основной металл. Поэтому при решении задачи по анализу общих ОН принимается, что металл зоны перфорации имеет модуль упругости, равный  [c.336]

Ползучесть — это свойство металлов и сплавов медленно и непрерывно пластически деформироваться при высоких температурах под действием постоянной, длительно приложенной нагрузки, не превышающей предела текучести ао,2- Для сталей ползучесть наблюдается при температурах свыше 350° С.  [c.198]

Ползучесть. При высоких температурах существенное значение имеет явление ползучести материалов (крип), заключающееся в росте пластической деформации с течением времени при постоянном напряжении, не вызывающем пластических деформаций при кратковременном действии нагрузки. В зависимости от величины напряжения и температуры деформация, происходящая в результате ползучести, может либо прекратиться, либо продолжаться до разрушения материала.  [c.114]

Расчет по предельному состоянию с определенным запасом проч ности не гарантирует от появления местных пластических дефор маций. Последнее еще допустимо при постоянных нагрузках, кото рые имеют место преимущественно в строительных конструкциях При переменных нагрузках, на которые чаще всего приходится рас считывать машиностроительные конструкции, появление пласти ческих деформаций во многих случаях недопустимо. Поэтому в та ких случаях следует вести расчет по допускаемым напряжениям  [c.501]


Рис. 7 иллюстрирует важное геометрическое свойство ортогональных кривых главных деформаций в поле с постоянными главными деформациями одинаковой величины и противоположных знаков. Пусть AB и DEF — две фиксированные кривые одного семейства. Угол а, образованный касательными к этим кривым в точках их пересечения с кривыми другого семейства, не должен зависеть от выбора последней кривой. В теории плоского пластического течения ортогональные семейства кривых, обладающих этим свойством, определяют направления максимальных касательных напряжений (линий скольжения). В этом контексте их обычно связывают с именами Генки [9] и Прандтля [10] свойства их подробно изучены (см., например, [11 — 13]).  [c.97]

Расчеты на прочность при постоянных напряжениях деталей из пластичных материалов обычно производят согласно условию отсутствия общих пластических деформаций, т. е. обеспечивают требуемый коэффициент запаса гю отношению к пределу текучести материала. Коэффициенты концентрации напряжений в расчеты не вводят, так как пики напряжений сглаживаются вследствие местных пластических деформаций, не опасных для прочности детали.  [c.12]

Для расчета компонентов напряжений в пластической области необходимо задать деформационные характеристики в зависимости от температуры. В первом приближении можно пользоваться идеализированными свойствами материала в виде модели идеального упругопластического материала (см. рис. 11.4). Предел текучести, модуль упругости и коэффициент Пуассона свариваемого материала задают зависимыми от температуры ат = ат(Т), Е = Е Т), v = v(T). В пределах интервала деформирования [(k—1)...(й)] свойства материала принимают постоянными, равными значению в точке k.  [c.422]

Предел текучести Стт (физический) - напряжение, при котором происходит рост пластических деформаций образца при практически постоянной нагрузке.  [c.39]

Считается, что возможной причиной интенсивного локального растворения мета ша является повышенная энергия деформированного металла в вершине трещины. Существует мнение, что причина этого явления скорее в том, что в результате постоянного пластического течения металла вершины концентращш дислокаций там существенно выше, что увеличивает число активных центров растворения. Однако электрохимическая концепция не может удовлетворительно объяснить причину перерождения коррозионной язвы (зародыша трещины) в собственно трещину. Эта гипотеза не претендует и на универсальность, поскольку не учитывает явлений адсорбщюнного и водородного разупрочнений [98].  [c.57]

Заметим, что интерес к данной постановке задачи о приспособляемости определяется еще и тем, что с аналогичной ситуацией (в смысле изменения самоуравновешенных напряжений при постоянных пластических деформациях) приходится сталкиваться также при анализе влияния геометрических эффектов в условиях циклического нагружения. Что касается практического значения, то Кениг [154] на основании нескольких выполненных им примеров отмечает, что поправки, вносимые при учете температурной зависимости упругих характеристик, малосущественны.  [c.22]

Здесь = Р/Р Р и а- —контактная сила и местное смятие, начиная с которых учитываются пластические деформации Р — наибольшая сила, достигаемая на этапе внедрения Р = = К[37]/(4Е)] Г] = ттк у к = (7т./2 7 = 5,7 в случае отсутствия трения между телами (3 характеризует вытекание материала из-под штампа в процессе его внедрения (если вытекание не учитывается, то /3 = О, при отсутствии трения для параболического штампа /3 = 1- Л2 = 0,33) к — пластическая постоянная. Пластические деформации начинают заметно влиять с момента, когда среднее давление под штампом достигает бринелевского значения. Соответствующее значение силы Р почти в 20 раз больше Рд при котором максимальные касательные напряжения достигают пластического уровня. Затем, решая задачу Коши (4) либо численно, либо аналитически, находим основные параметры удара. Обозначив а = и, преобразуем уравнение (4) к виду  [c.527]

При разрушении исчерпание запаса пластичности определяется рядом факторов. Развитие зародыша в микротрещину протекает при постоянном пластическом течении металла по направлению вынужденного сдвига вдоль действия главного сдвигающего напряжения. При этом элементарный объем металла поражен трещинами. Е.М. Макушок [31], воспользовавшись теорией деформируемости металлов  [c.324]

Полигонизация 152 Полинорфиам 135 Последействие упругое 180 Постоянная пластическая 29 Потенциал пластический 331  [c.454]

Методы обработки основаны на использовании пластических свойств металлов, т. е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Отделочная обработка методами пластического деформирования сопровождается упрочнением поверхностного слоя, что очень важно для повышения надежности работы деталей. Детали станонится менее чувствительными к усталостному разрушению, новьипаются их коррозионная стойкость и износостойкость сопряжений, удаляются риски и микротрещины, оставшиеся от предшествующей обработки, В ходе обработки шаровидная форма кристаллов поверхности металла может измениться, кристаллы сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки принимает требуемые форму и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.  [c.385]

В механике деформируемого твердого тела непругую деформацию обычно дифференцируют на два вида. Деформацию, которая при Г = onst протекает только при постоянно возрастающей нагрузке (при одноосном растяжении а>0), обычно называют мгновенной пластической (или атермической), так как ее приращение независимо от длительности воздействия (даже при весьма малом времени воздействия) однозначно связана с приращением напряжений. Деформацию, протекающую при а = onst, называют деформацией ползучести.  [c.12]


При нагружении на линии продолжения трещины в пластической зоне отношение напряжений, параллельных трещине, к напряжениям, ориентированным перпендикулярно к ней, q — = OyylOxx практически постоянно (q — 0,62 0,68) и не зависит от предела текучести, модуля упрочнения (в варьируемом диапазоне), степени нагружения материала у вершины трещины (рис. 4.3), а также от параметра нагружения a = KnlKi. На рис. 4.3 штриховыми линиями отмечена некорректная область, где начальное притупление трещины оказывает влияние на НДС (представлен случай, когда Кп — 0). Вне этой области НДС отвечает нагружению бесконечно острой трещины с притуплением, равным нулю. Полученные результаты в части влияния притупления на НДС достаточно хорошо соответствуют решению по теории линий скольжения, где жесткость напряженного состояния, а следовательно, и параметр q перестает изменяться, начиная с у > 3,81 р (р — радиус притупления трещины) [124].  [c.205]

Из предшествующего очевидно, что всякая система, находящаяся под действием нагрузок постоянного направления и изготовленная из достаточно пластичного материала, обладает в известной степени свойством -самоупрочнения. Временное повышение рабочей нагрузки до величины, вызывающей умеренные пластические деформации, упрочняет систему. Если же деталь испытывает переменные нагрузки, то переход за предел текучести под действием нагрузки одного направления ослабляет материал против действия нагрузки противоположного направления.  [c.399]

Как видно из этого примера, можно, придавая элементам достаточную упругость, застраховаться с большим резервом от релаксации. Кроме того, упругие элементы, амортизируя нагрузку, уменьшают пластическую вытяжку болтов и, поддерживая в системе постоянный натяг, предупреждают самоотвинчивдние гаек, что не освобождает от необходимости, жесткого стопорения гаек.  [c.448]

При холодном клепании усадка заклепки происходит только в результате п.тастической деформации материала заклепки при расклепывании. Осевая сила, стягивающая соединяехше детали, при холодном клепании меньше, чем при горячем, и зависит от степени пластической деформации заклепок, которая может колебаться в значительных пределах II имеет более или менее постоянную величину только при машинном клепашш, например гидравлическом.  [c.196]

После точки А при дальнейшем растяжении образца кривая растяжения становится криволинейной и плавно поднимается до точки С, где наблюдается переход к горизонтальному участку D, называемому площадкой текучести. На этой стадии растяжения удлинение образца растет при постоянном значении растягиваюи ей силы, обозначаемой через Такой процесс деформации, называемый текучестью материала, сопровождается остаточным (пластическим) удлинением, не исчезающим после разгрузки.  [c.93]

После появления пластического течения в среднем стержне конструкция еще сохраняет способность воспринимать возрастающую нагрузку. При этом усилие в среднем стержне остается постоянным и равно iViT. Конструкция превращается в статически определимую, и усилия в крайних стержнях определяются из условия равновесия узла (рис. 489)  [c.491]

После появления текучести в наиболее удаленных от нейтральной оси точках сечения при дальнейшем увеличении изгибающего момента пластическое состояние материала распространяется в направлении к нейтральной оси. До полного исчерпания несущей способности балки в ее поперечных сечениях будут две зоны — пластическая и упругая (рис. 495, б). Предельное состояние наступит, когда текучесть распространится по всему поперечному сечению, так как после этого дальнейшая деформация балки происходит без увеличения изгибающего момента. Эпюра нормальных напряжений в поперечном сечении для предельного состояния изображена на рис. 495, в. В рассматриваемом поперечном сечении образуется так называемый пластический uiapHup, который передает постоянный момент, равный предельному изгибающему моменту.  [c.497]

Расчет по предельному состоянию. После появления пластических деформаций в наиболее удаленных от нейтральной оси точках опорных сечений дальнейший рост нагрузки приведет к образованию в этих сечениях пластических шарниров, а изгибаюший момент при этом достигнет предельного значения Мпр. Теперь уже балка работает как шарнирно опертая, к которой на опорах приложены постоянные моменты (рис. 497, б)  [c.500]

Так как при разрушении масштаб времени не играет роли, постоянную k в (3.28) можно принять равной единице. Умножив обе части полученного условия на Vi, мы видим, что оптимальный проект допускает механизм разрушения, в котором вклад любого стержня во внутреннюю мош,ность диссипации фермы численно равен или меньше его вклада в вес фермы в зависимости от того, будет ли площадь поперечного сечения рассматриваемого стержня больше или равна А. Эта форма условия оптимальности, если исключить рассмотрение нижней границы площади поперечного сечения, была дана Друккером и Шилдом [14]. Оптимальное пластическое проектирование ферм будет рассмотрено в гл. 5.  [c.33]

Заметим, что для этой балки с тонкими полками осевые напряжения в полках существенно постоянны. Поэтому для упруго-идеально-пластических балок предел текучести достигается одновременно во всех точках полок. Это намного упрощает двухцелевое проектирование балки с заданными упругой податливостью и коэффициентом нагрузки при пластическом разрушении под действием одной и той же системы нагрузок. Действительно, определим оптимальный проект, удовлетворяя первому ограничению на поведение балки и игнорируя второе. Если постоянная интенсивность напряжений ао в полках, согласно этому упругому проекту, должна превышать предел текучести сту при одноосном напряженном состоянии, то проект определится вторым ограничением и толщина полок, предусматриваемых упругим проектом, должна быть увеличена в (То/ау раз.  [c.82]

Коэффициент запаса по отношению к пределу текучести материала при расчете деталей из пластичных материалов под действием постоянных напряжений выбирают минимальным при достаточно точных расчетах, т. е. равным 1,.3,..1,5. Это возможно в связи с тем, что при перегрузках, превышающих предел текучести, пластические деформации весьма малы (особенно при сильно неоднородных напряженных состояниях деталей) и обычно не вызывают выхода детали из строя. Коэффициенты запаса прочности увеличивают только для деталей из материалов с большим отношением Ог/Яв, для которых иначе получается недостаточный запас по отношению к временному со-противле1шю.  [c.13]

Снижение относительной влажности. Может быть осуществлено путем увеличения температуры воздуха или, еще лучше, постоянным удалением находящейся в нем влаги. Во многих случаях достаточно понижения относительной влажности до 50 %, но если в воздухе присутствует гигроскопичная пыль или другие примеси, 50 %-ная влажность слишком велика. Этот способ защиты э( х )ективен, за исключением тех случаев, когда коррозия вызывается кислыми парами от находящейся рядом непросушен-ной древесины или некоторыми летучими составляющими пластических материалов или красок.  [c.179]

Из1ибающий момент не может стать больше предельного. Сечение, в котором воаник предельный момент, можно уподобить шарниру с постоянным моментом трения. Такой шарнир носит название пластического шарнира. Очевидно, если в балке или раме возникнет несколько шарниров, система может обратиться в механизм.  [c.377]


У многих материалов (полимеры, бетон, металлы при повышенной температуре) в эксплуатационных условиях закон связи а(е) существенно зависит от времени. Изменение напряжений и деформаций во времени при постоянных внешних нагрузках называют ползучестью (явление ползучести можно обнаружить при растяжении материалов даже в условиях нормальной температуры). Так, при растяжении образца для снятия показаний тензометров приходится, как правило, приостанавливать процесс нагружения либо по силам, либо по деформациям. Такая остановка в упругой области практически не приводит к изменению показаний во времени. Если остановка происходит в пластической области, то для машин кинематического типа (e = onst) благодаря вязкости материала происходит заметное самопроизвольное падение напряжений (рис. 1.12), т. е. релаксация. При нормальной температуре Та напряжение а асимптотически стремится к  [c.37]


Смотреть страницы где упоминается термин Постоянная пластическая : [c.16]    [c.217]    [c.51]    [c.64]    [c.218]    [c.578]    [c.77]    [c.54]    [c.58]    [c.127]    [c.355]    [c.622]    [c.141]    [c.131]   
Сопротивление материалов (1962) -- [ c.29 ]



ПОИСК



Вибрации фундамента на упруго-пластическом основании при постоянно действующей и периодической силах

Диски вращающиеся Расчёт Упруго-пластическое постоянной толщины с ободом

Диски вращающиеся Расчёт Упруго-пластическое постоянной толщины — Расч

Очистка сплошные постоянной толщины - Деформация пластическая

Решение некоторых осесимметричных задач посадки с учетом пластических деформаций, инерционных сил и изменения упругих постоянных

Упруго-пластическое состояние вращающегося равномерно нагретого диска постоянной толщины

Упруго-пластическое состояние диска постоянной толщины, нагруженного внутренним давлением при отсутствии упрочнения



© 2025 Mash-xxl.info Реклама на сайте