Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КОМПОЗИТОВ

IV. практическое применение композитов  [c.485]

Разработка технологии сборки требует внимательного качественного контроля и существенно зависит от выбранного типа соединения, адгезива и подложки так же, как и от условий применения. Использование самонарезающих винтов оказалось полезным для предотвращения расслоения композитов, особенно в условиях циклических или высоких ударных нагрузок. Труды ежегодных технических конференций по композитам являются прекрасным источником современной информации по материалам, разработке и фактическим данным, касающимся применения конструкций из АП. Примером практического применения композитов является отчет об исследованиях по результатам эксплуатации судов из стеклопластиков в ВМС США за 15 лет, описывающий особенности поведения различных деталей конструкций. Кроме того, имеется много технических брошюр, написанных разработчиками основных материалов. Методы разработки путей конструирования и критериев оценки АП все еще развиваются, поскольку в настоящее время оказались доступными новые материалы или их комбинации. Техника конструирования становится 520  [c.520]


До недавнего времени в практических задачах инженерной механики эти вопросы на передний край не выдвигались. Это не значит, что анизотропные материалы не находили применения. С ними давно приходится иметь дело. Вспомним хотя бы резинокордную конструкцию автомобильных и авиационных шин, где резиновая оболочка армирована стальными или нейлоновыми нитями, образующими косоугольную сетку. Можно вспомнить и фанерные анизотропные панели, применявшиеся в прошлом для оклейки несущих плоскостей самолетов. Можно привести и другие примеры, где анизотропия фигурирует как важный фактор расчетной схемы. И все же, несмотря на несомненную важность и даже заслуженность подобных прикладных задач, следует признать, что все они узконаправленны и по своей общности существенно уступают тому богатству структурных схем, которое раскрывается перед нами в связи с применением композиционных материалов. Сейчас немыслимо представить авиационную и ракетно-космическую технику без применения композитов. Композиционные материалы уже охватили многие отрасли промышленности, в том числе производство предметов домашнего обихода. Не будет преувеличением сказать, что человечество стоит уже на пороге нового века — века композитов.  [c.285]

Если условия (ЗОа) — (ЗОе) не выполняются, то соответствие между напряжениями и деформациями оказывается неоднозначным, что приводит к двусмысленностям в физической интерпретации поверхности прочности и большим затруднениям в практических применениях критерия разрушения. Данный случай представляет не только академический интерес как видно из табл. I и рис. 6, некоторые применяемые на практике композиты не удовлетворяют отдельным соотношениям (ЗОа) — (ЗОе).  [c.426]

Далее будет приведен обзор имеющихся в литературе данных о кинетике и механизме твердофазных реакций при температурах изготовления и эксплуатации, а также о прочности поверхности раздела в системах, представляющих интерес для получения композитов практического применения.  [c.333]

Конструкции и технология получения материалов были и остаются областью наибольшего интереса, направленного на совершенствование техники. С 1966 г. был достигнут существенный прогресс в использовании КУС. Этот прогресс будет продолжаться, и к 1990 г. промышленность производства КУС прочно утвердится в своих правах. Первоначальной отдачи от практического применения КМ следует ожидать от авиации, а затем от достижений в области аэрокосмической техники. Композиты совершат, по-видимому, значительное вторжение в область создания будущих источников энергии (солнечная энергия и энергия ядерного синтеза), подобно тому как они обеспечивают конструкционными материалами рост выпуска новых видов вертолетов.  [c.565]


Практическое применение изложенного метода определения разрушающих интенсивностей давления для всех компонентов композита и всех слоев оболочки требует организации вычислительного процесса, включающего в себя 1) решение линейной задачи прочности и формирование на ее основе начального приближения 2) выполнение цикла длины 2т (т — общее число слоев оболочки), на (2к — 1)-м и 2 -м шагах которого (к = 1, 2,. .., т) определяются нагрузки начального разрушения связующего и армирующих волокон -го слоя по итерационным формулам (8.3.11), (8.3.12). Всякое применение последних требует решения нелинейной краевой задачи (8.3.5), (8.2.7а) при соответствующем значении параметра А. Это решение строилось итерационным методом, изложенным в гл. 7, причем в качестве начального приближения принималось решение линеаризованной задачи, а возникающие на каждой итерации линейные краевые задачи (7.5.11) эффективно интегрировались методом инвариантного погружения. Принятые начальные приближения оказались (см. ниже) весьма близкими к истинным и обеспечили [21] быструю сходимость всех итерационных процессов. Нагрузка начального разрушения Р композитной оболочки определялась по формулам (2.2.8).  [c.242]

Практическое применение нашли две разновидности фрез фрезы сборные с механическим креплением ножей (вставок), оснащенных композитом, и фрезы с механическим креплением пластин из композита.  [c.173]

В наш век с усложнением форм строительных конструкций, появлением авиастроения, разнообразными запросами машиностроения роль методов теории упругости резко изменилась. Теперь они составляют основу для построения практических методов расчета деформируемых тел и систем тел разнообразной формы. При этом в современных расчетах учитываются не только сложность формы тела и разнообразие воздействий (силовое, температурное и т. п.), но и специфика физических свойств материалов, из которых изготовлены тела. Дело в том, что в современных конструкциях наряду с традиционными материалами (сталь, дерево, бетон и т. д.) широкое применение получают новые материалы, в частности композиты, обладающие рядом специфических свойств. Так, армирование полимеров волокнами из высокопрочных материалов позволяет получить новый легкий конструкционный материал, имеющий высокие прочностные свойства, превосходящие даже прочность современных сталей. Но наличие полимерной основы наделяет такой композитный материал помимо упругих вязкими свойствами, что обязательно должно учитываться в расчетах. Даже в традиционных материалах в связи с высоким уровнем нагружения, повышенными температурами возникает необходимость в учете пластических свойств. Все эти вопросы теперь составляют предмет механики деформируемого твердого тела.  [c.7]

Как с очевидностью следует из проведенного обсуждения, методу пропитки свойственны некоторые трудноразрешимые проблемы. При изготовлении композита пропиткой чрезвычайно важно обеспечить смачивание волокон расплавом. Существенное повышение температуры заливки (например, значительно выше 7пл алюминия) или использование поверхностно-активных веществ может привести к неполному смачиванию в практически важных системах. Вследствие применения указанных приемов происходит недопустимое ухудшение механических свойств волокна, а значит, и всего композита. Покрытия, в частности вольфрамовые, облегчают смачивание, однако при такой толщине, которая приемлема для тонких волокон, они не обладают достаточной долговечностью в контакте с жидким металлом. Волокна большого диаметра (>0,25 мм) в прочных матрицах, которые представляются практически интересными, механически повреждаются (двойникова-нием или скольжением) при охлаждении от температуры пропитки.  [c.333]

Как только станут доступны воспроизводимые образцы композитов, основное внимание следует уделить влиянию условий эксплуатации материала на сплошность поверхности раздела и механические свойства, зависящие от состояния поверхности раздела. Подобно тому как это было при разработке композитов А1 — В, такие исследования очень важны для установления точных параметров технологии изготовления материала, с тем чтобы получить именно то особое состояние поверхности раздела, которое необходимо для конкретных условий применения материала. Если композит предназначается, например, для лопаток газовых турбин, то конструктор должен установить реальные требования к этим анизотропным материалам с ограниченной пластичностью таким образом, чтобы применительно к условиям использования можно было эффективно воздействовать на свойства, зависящие от со стояния поверхности раздела, например, на поперечную прочность В данной главе показано, что в настоящее время известны основ ные принципы, с помощью которых может быть изменена струк тура поверхности раздела в металлах, армированных окислами Однако из-за отсутствия образцов с воспроизводимыми характе ристиками влияние изменения состава и структуры поверхности раздела на механические свойства композитов практически не изучено.  [c.351]


Устойчивость нестационарного (зависящего от времени) поведения материала может быть рассмотрена так же, если заменить деформации и перемещения соответствующими скоростями [6, 7, 9, 10, 11]. Все практически важные материалы проявляют некоторую зависимость от времени в неупругой области. Однако для большинства композитов в типичных случаях их применения при низких и умеренных температурах удобной является гипотеза о стационарности (независимости от времени). Исключением являются композиционные материалы с металлической матрицей, предназначенные для работы при высоких температурах. В этом случае свойства ползучести принимаются во внимание в первую очередь.  [c.21]

Выбор полимерной композиции для конкретной цели определяется ее технологическими характеристиками, температурой отверждения и влиянием на свойства композиционного материала. Основными технологическими характеристиками являются вязкость и жизнеспособность содержащей катализатор системы, или, точнее, исходная вязкость и ее изменение во времени. К важным реологическим характеристикам относятся также продолжительность желатинизации и текучесть смолы под действием натяжения при намотке и во время отверждения. Достаточно низкая вязкость очень важна для полной пропитки армирующего материала и удаления захваченного воздуха и летучих растворителей. Для практических целей можно применять композиции с вязкостью при 25 °С в пределах 0,35. .. 1,5 Па-с. При работе с очень жидкими системами возникают проблемы контроля и постоянства содержания смолы. Некоторые волокна, например углеродные, не захватывают достаточного количества смолы. В отдельных случаях смола может мигрировать в наружные слои намотки, оставляя внутренние сухими , что приводит к преждевременному разрушению композита. Недостатками применения слишком вязкой смолы являются распушка волокон в емкости со смолой и в отверстии, через которое они подаются, неравномерное покрытие во-  [c.205]

Быстро расширяющееся применение деталей из композитов в автомобильной и других крупномасштабных отраслях промышленности привлекает особое внимание к непрерывным производственным технологиям, используемым для производства этих конструкционных материалов. Непрерывный процесс их получения от сырья до готового продукта обеспечивает оптимальную эффективность производства в тех случаях, когда это оправдано объемом выпуска изделий. При работе с композиционными материалами, свойства которых зависят практически только от ориентации волокон, непрерывный процесс дает дополнительное преимущество, обеспечивая надежный контроль их ориентации и натяжения. Сочетание этих методов переработки с другими приводит к такой экономии материала, которую не удается достичь при других технологиях производства.  [c.239]

Определенный практический опыт был получен не только в результате применения этих материалов в США, но также на основе промышленного использования композитов в западно-европейских автомоби-  [c.493]

Деформационная теория пластичности анизотропных сред обладает достаточной общностью, однако, ее применение при решении конкретных практических задач может вызвать затруднения, связанные с экспериментальным определением функций многих аргументов. В связи с этим возникает необходимость, с одной стороны, развития методов прогнозирования материальных функций анизотропных композитов по свойствам компонентов, с другой — разумного упрощения определяющих соотношений. В [204] рассмотрены понятия упрощенной теории, для которой к = (р = = О, рх = Ps. j j ), Р = P U j ), И простейшей теории к = у> = = 0, рх= Px(je ),  [c.109]

Область применения композитных материалов на полимерной основе постоянно расширяется. Конструкции из полимерных композитов используются в качестве несущих элементов и деталей машин, летательных аппаратов, водных и наземных транспортных средств, протезирующих систем, продолжается внедрение полимерных материалов в строительство и мелиорацию. Важное место занимают они среди конструкционных материалов новых видов техники. Постепенное вытеснение полимерными композитами классических конструкционных материалов (древесины, сталей, металлических сплавов и обычных видов керамики) обусловлено сочетанием в них целого ряда практически важных качеств. Во-первых, это высокие удельные значения деформативных и прочностных характеристик, реализованные в таких широко известных современных композиционных материалах на полимерной основе, как стекло-, угле-, боро- и органопластики. Во-вторых, химическая и коррозионная стойкость, а также широкий спектр электрофизических и тепловых свойств полимерных композитов. В-третьих, их высокая экономическая эффективность как материалов, производимых из дешевых видов сырья. Наконец, высокая технологичность полимерных композитов при применении их в габаритных изделиях различных геометрических форм. По совокупности всех этих показателей композиционные материалы на полимерной основе успешно конкурируют с классическими конструкционными материалами.  [c.8]

Модели оптимизации несущих конструкций из композитов являются достаточно сложным объектом для численного анализа даже при условии применения самых современных его средств и методов. Развитие этих методов, составляющих самостоятельный раздел современной математики — нелинейное математическое программирование, в значительной мере стимулируется потребностями разработки практических приемов рещения конкретных задач ОПК, в частности задач оптимизации конструкций из композитов.  [c.215]

Механика хрупкого разрушения применима, если / > ру. Другое ограничение связано с наличием у реальных конструкционных материалов структуры, размер элементов которой сопоставим с размером трещины. Для поликристаллических материалов характерный размер структуры р имеет порядок размера зерна, для композитов на основе волокон —порядок диаметра волокна и т. п. Область, для которой выполнено условие / > р, но нарушено условие / > Ру, является предметом нелинейной механики разрушения. Чтобы описать зависимость а (/) при небольших значениях /, необходимо детально рассмотреть концевые зоны, в которых происходит развитие пластических деформаций. Стремление сохранить в качестве основной характеристики материала трещиностойкость Кгс приводит к различным полуэмпирическим соотношениям. Вместе с тем размеры устойчивых трещин обычно составляют десятки и даже сотни миллиметров, а эксплуатационные номинальные напряжения, как правило, невелики по сравнению с пределом текучести, поэтому область применения механики хрупкого разрушения в практических расчетах довольно широка.  [c.107]


Для правильного применения волокнистых композитов потребовалась разработка методов определения трансверсальных и сдвиговых характеристик, на которые раньше практически не обращали внимание, и усовершенствование способов определения упругих и прочностных характеристик в направлении волокон.  [c.10]

Первым примером такого рода композитов, получивших достаточно широкое практическое применение, служат стеклопластики (мы не говорим здесь об известных с глубокой древности саманных постройках, т. е. о композитах глина — солома, механические свойства которых совсем не плохи). Перемешивая полимерную массу с мелко изрубленным стеклянным волокном, мы получаем первый пример композита с хаотическим армированием. Прочность такой пластмассы выше, чем прочность неар-мированного материала, однако потенциальная прочность стеклянного волокна используется при этом далеко не полностью, разрушение всегда происходит по матрице, стеклянные волокна не разрываются, а выдергиваются из пластмассы. Следует заметить, что изделия из хаотически армированных пластиков, например полиэтилена, изготовляются обычными способами — путем формования, выдавливания, литья. Поэтому стандартное технологическое оборудование оказывается пригодным для получения таких изделий.  [c.684]

Трехмерная теория для гранулированных композитов также предложена Феррисом [27] она подтверждается немногочисленными пока экспериментами [28]. Кроме того, Шепери [92, 94] использовал неравновесную термодинамику и механику разрушения, чтобы получить трехмерное представление, включающее -эффекты и обратимой нелинейности, и микроструктурных повреждений. Однако последняя теория с двумя типами нелинейности и с наличием или с отсутствием обусловленной пустотами дилатации пока еще не проверена и непригодна для практического применения. Более того, справедливость аналогичной теории (Шепери и др. [98]) для волокнистых пластиков не доказана в настоящее время необходима хорошо продуманная программа одномерных и многомерных опытов для оценки существующих теорий.  [c.189]

Несмотря на благоприятное сочетание механического континуума и химического дисконтинуума, практическое применение ориентированных эвтектических композитов существенно ограничено по ряду обстоятельств. Термодинамика эвтектических n Tenf позволяет варьировать объемную долю упрочнителя лишь в очень узких пределах. Кроме того, выбор материалов матрицы и упрочнителя невелик, а материалы матрицы очень часто обладают большой плотностью. Наконец, процессы изготовления ориентированных материалов часто недопустимо дороги и позволяют получать изделия далеко не любой формы.  [c.47]

Основная теория зоны взаимодействия изложена в гл. 1, поскольку она играет важную роль в технологии композитов. Благодаря этой теории хим ически взаимодействующие системы (системы третьего класса) получили перспективу практического применения. Затем эта теория была развита и позволила дать качественное описание композитов псевдопервого класса.  [c.145]

В большинстве случаев практического применения волокнистых композитов объемная доля волокон велика, и они воспринимают большую часть нагрузки. Функция матрицы состоит в том, чтобы удерживать волокна вместе и передавать нагрузку от разрушенных волокон на окружающие при помощи сдвиговых напряжений вблизи мест разрывов. Это действительно так, если большинство волокон непрерывные и нагрузка прикладывается в направлении их укладки. Если они разрывны или нагрузка прикладывается не в направлении волокон (в однонаправленном композите или армированном под углом), то материал матрицы в значительной степени участвует в восприятии приложенной нагрузки. Большая часть настоящей главы посвящена однонаправленным волокнистым композитам, нагруженным в направлении волокон, поэтому роль материала матрицы здесь ограничивается перераспределением нагрузок около концов разорванных волокон (или около мест разрывов при армировании короткими волокнами).  [c.279]

Применение методов классической механики разрушения на уровне структурных элементов слоя позволяет рассматривать композит как неоднородную среду и, но-видимому, является наиболее сильным подходом. Основная цель в этом случае заключается в определении критических коэффициентов концентрации напряжений Ки- Однако практическое применение классической механики разрушения к композитам ограничено чрезвычайной сложностью анализа напряженного состояния неоднородной среды. В большинстве случаев это практически невыполнимая задача, поэтому до настоящего времени численные результаты получены только для простейших, однонаправленных, схем армирования.  [c.53]

Однако для реализации считавшихся ранее недопустимымр режимов работы необходимо за счет нетрадиционных решений конструкции механических узлов и разработки новых технологических процессов получения материалов нейтрализовать природную хрупкость керамик. Пока после более чем десятилетних интенсивных поисков адекватного решения для монолитных керамик не найдено. В связи с этим вырос интерес к керамическим композиционным материалам, обладающим более] высокой ударной вязкостью. По-видимому, такие композиты е конце концов найдут практическое применение в качестве] материалов для несущих конструкций.  [c.324]

Исследования структуры и свойств мартенситно-стареющих сталей (гл. 6) проводили с целью разработки оптимальных режимов термообработки композитных конструкций, обеспечивающих повышение прочности изделий. Это имеет важное практическое значение при создании конструкций, работающих в агрессивных средах, при высоких давлениях и теплообмене. Исследования характеристик трещино-стойкости волокнистого бороалюминиевого композита (гл. 8) были предопределены необходимостью оценки несущей способности элементов ферменных конструкций космических аппаратов с учетом влияния технологических и эксплуатационных дефектов. Интенсивное развитие нанотехнологий, использующих новый класс материалов — ультрадисперсные порошки химических соединений, привело к резкому увеличению числа работ по их практическому применению для повышения качества металлоизделий. Результаты 20-летних исследований в этом направлении представлены в гл. 9. Широкие перспективы использования керамических материалов, в частности конструкционной керамики на основе оксида алюминия, а также проведенные исследования обозначили ряд проблем при изготовлении изделий — недостаточная эксплуатационная надежность, хрупкость, сложность формирования бездефектной структуры. Отсюда возникли задачи исследования трещиностойкости керамики в связи с влиянием структуры, свойств и технологии ее получения (гл. 10).  [c.9]

Проблемы, связанные с разделением вкладов различных видов деформирования и/или их дозировкой, серьезно ограничивают область практического применения составных образцов. Не разделив указанные вклады, трудно соотнести данные испытаний составных образцов на продольный сдвиг с поведением реальных конструкций. Из-за несходимости компонент деформаций типов I и II при распространении трещины между двумя разными материалами рекомендуется ог1заничить применение составных образцов однонаправленными композитами. Общего изгиба, возникающего при испытании составного образца с одной накладкой, можно избежать, перейдя к испытанию симметричного образца с двумя накладками.  [c.277]


В последние десятилетия наряду с традиционными материалами появились новые искусственные материалы — так называемые композиты. Строго говоря, термин композитный материал или композит следовало бы относить ко всем гетерогенным материалам, состоящим из двух или большего числа фаз. Сюда относятся практически все сплавы, применяемые для изготовления элементов конструкций, несущих нагрузку. Соединение хаотически ориентированных зерен пластичного металла и второй более прочной, но хрупкой фазы позволяет в известной мере регулировать свойства конечного продукта, т. е. получать материал с необходимой прочностью и достаточной пластичностью. Усилиями металлургов созданы прочные сплавы на основе железа, алюминия, титана, содержащие различные. тегирующие добавки. Достигнутый к настоящему времени предел прочности составляет примерно 150 кгс/мм для сталей, 50 кгс/мм для алюминиевых сплавов, 100 кгс/мм для титановых сплавов. Эти цифры относятся к материалам, из которых можно путем механической обработки получать изделия разнообразной формы. Теоретический предел прочности атомной решетки металла, представляющий собою верхнюю границу того, к чему можно в идеале стремиться, по разным моделям оценивается по-разному, в среднем это 1/10—1/15 от модуля упругости материала. Так, для железа теоретическая прочность оценивается значением примерно 1400 кгс/мм что в десять раз выше названной для сплава на железной основе цифры. В настоящее время существуют способы получепия тонкой металлической проволоки или ленты с прочностью порядка 400—500 кгс/мм , что составляет около одной трети теоретической прочности. Однако применение таких проволок пли лент в конструктивных элементах неизбежным образом ограничено.  [c.683]

Основные концепции континуальных теорий смесей основательно изучены в рамках современных теорий механики сплошных сред. В теориях смесей предполагается наличие двух или более сред в каждой точке пространства, поэтому общие законы сохранения для смесей сформулировать нетрудно, но практическое их применение к композиционным материалам сталкивается с определенными затруднениями, связанными с трудностями задания законов взаимодействия компонентов на основе информации об их взаимном расположении и физических характеристиках. Для слоистой среды теория смеси, в которой параметры взаимодействия компонентов были определены на основании решений некоторых простейших квазистатических задач, предложена в работе Бедфорда и Стерна [12]. Новизна теории Бедфорда и Стерна состоит в том, что допускаются различные движения компонентов смеси, причем связь между этими движениями определяется моделью взаимодействия компонентов в реальном композите. В работе Бедфорда и Стерна [13] развита общая термомеханическая теория, основанная на этой модели, а также выведена система уравнений, применимых к определенному классу армированных волокнами композитов (см. Мартин и др. [45]).  [c.380]

Установлено, что силановые аппреты улучшают степень дисперсности пигментов и физические свойства большинства термопластов с минеральными наполнителями, а также способствуют сохранению этих свойств при воздействии влаги [19, 36, 37, 43, 42]. Использование силановых аппретов позволяет вводить во многие системы большое количество дешевого наполнителя практически без ухудшения физических свойств композита. При возрастании стоимости полимерного связующего становится очевидной большая экономическая эффективность применения дешевого наполнителя, модифицированного силаном.  [c.159]

Сендецкий [56] решил задачу взаимодействия трещины со многими включениями. Возможность применения этих аналитических решений для описания поведения композитов остается пока невыясненной. При их практическом использовании возникают принципиальные трудности, в основном обусловленные тем, что теперь в области определения исследуемого взаимодействия микротрещины имеют тот же самый порядок, что и характерный размер (диаметр волокна) композитной структуры, и, кроме того, при статически неоднородной упаковке волокон не существует алгоритма для применения решения с идеализированной геометрией. В третьем случае, когда трещина находится на границе раздела волокно — матрица, характер разрушения склеенных тел, состоящих из двух различных материалов, изучен еще менее. Для определения распределения напряжений и деформаций в неоднородных унругих телах проведены многочисленные теоретические исследования, некоторые из них приведены в работах [17, 57].  [c.256]

При использовании в расчетах упрощенных моделей возникает естественный вопрос о степени соответствия результатов анализа эксперименту. Другими словами, позволяет ли предлагаемая модель получить количественные оценки поведения композитов при разрушении или ее применение ограничено качественным анализом тенденций новедения и относительного влияния различных факторов. Решение этого вопроса, как и во всех случаях применения приблин<енных аналитических методов, основано на сравнении с экспериментальными данными. Роль каждого из кратко рассмотренных подходов в создании практически применимого критерия разрушения слоистых композитов становится только яснее по мере увеличения объема информации, позволяющей проводить сравнения экспериментальных и аналитических данных.  [c.55]

На большинстве предприятий, изготавливающих изделия из композитов, температура в цикле отверждения изменяется настолько быстро, насколько позволяет оборудование. Особенно это справедливо для этапа охлал<дения, на котором практически любая большая скорость изменения температуры считается допустимой до тех пор, пока в изделии сохраняется в некоторой степени однородное поле температуры. (Для тонких слоистых композитов обычна скорость прогрева порядка 2,8 до 5,5°С/мип. Скорости прогрева толстых материалов (состоящих более чем из 40 слоев) гораздо ниже. Это связано с трудностями диссипации тепла, выделяющегося в результате протекания химических реакций.) Скорость охлаждения тонких композитов можно увеличить путем применения легких прессформ, изготовленных из материалов с низкой теплоемкостью и хорошей теплопроводностью. Обычными являются и схемы активного охлаждения, использующие вентиляторы, охлаждение водой или жидким азотом. На рис. 7.11 показан температурно-временной режим отверждения типичного боропластика на эпоксидном связующем. Для сравнения приведены режимы быстрого и медленного охлаждения. Пунктирная линия соответствует ступенчатой аппроксимации этапов охлаждения.  [c.273]

Наиболее важные практические приложения жидких кристаллов основаны на их электрооптических свойствах. Жидкие кристаллы широко используются в электронных часах, калькуляторах, телевизорах в качестве индикаторов и табло для отображения информации и др. В комбинации с фоточ вствительными полупроводниковы 1и слоями жидкие кристаллы применяются в качестве усилителей, преобразователей изображений, устройств оптической обработки информации. В последние годы все более широкое применение находят жидкокристаллические композиты в сочетании с полимерами.  [c.50]

Создание новых композиций на основе керамических составляющих постоянно расширяется. Применения ККМ чрезвычайно обширны и охватывают практически все области современной техники. Можно привести лишь два примера, показывающих большое значение керамических композитов без создания ККМ на основе ферритовых магнитных сердечников было бы невозможно появление современных быстродействующих компьютеров, а по Тучение ККМ на основе кремниевых оптических волокон позволило разработать экономически выгодные системы телекоммуникаций.  [c.160]

Практически все промышленные типы стекловолокон приемлемы для армирования композитов, начиная с рубленого волокна в виде матов или материала для распыления и кончая различными видами тканых текстильных изделий или нетканых ровин-гов, и используются для удовлетворения специфических требований к конструкционным материалам в зависимости от областей их применения. Стекловолокно должно быть подвергнуто специальной обработке или шлихтованию в зависимости от типа используемой полимерной смолы, чтобы обеспечить эффективную пропитку стекловолокна смолой и уменьшение влияния влажности на связь стекло—полимер.  [c.512]

В то время как возрастало использование стеклопластиковых композитов при создании морских судов за последние годы, расширение областей применения СП проходило относительно медленно. Это происходило частично из-за недостатка знаний или недостаточно хорошей осведомленности конструкторов морских судов о свойствах и критериях использования композиционных материалов. Кроме того, суш,ествует понятное сопротивление части конструкторов и судостроителей этим новшествам из-за существенных различий переработочных характеристик этих материалов по сравнению с традиционным металлом, а именно они непластичные (нековкие), не могут быть сварены и конструирование на их основе требует рассмотрения как основного материала, так и процессов его переработки, долговременной эксплуатации в условиях определенной окружающей среды и т. д. Однако приобретенный опыт показал, что при правильном использовании композиционных материалов возникают новые существенные возможности по уменьшению стоимости и массы, улучшению внеш- него вида, увеличению долговечности, снижению эксплуатационных затрат и увеличению срока службы судов. Все это сегодня должно стать значительной частью той информации и практического опыта, которую мог бы получить конструктор морских судов. Тем более, что с развитием КМ появляюгся новые материалы, которые при сопоставлении по прочности и жесткости приближаются к любым металлам, существующим сейчас или могущим появиться в ближайшем будущем. Ближайшие 20— 30 лет могут привести человечество в эру композиционных материалов.  [c.535]


В книге рассматриваются современные модели расчета и методы параметрической оптимизации несущей способности оболочек вращения из композитов двумерной и пространственной структур армирования. Основное внимание при этом уделено оболочкам, работающим на статическую устойчивость или в режиме колебаний, эффективные деформативные характеристики которых определяются методами теории структурного моделирования композита. В задачах, содержащих оценки предельных состояний оболочек по прочности, используется феноменологическая структурная модель прочностных характеристик слоистого композита, параметры которой получены экспериментально. Подробно анализируются особенности постановки задач пара.метрической оптимизации оболочек из композитов. Показана взаимосвязь векторной и скалярной моделей задач оптимизации в случае формализуемых локальных критериев качества проекта. Значительное место отведено изложению и примерам приложения нового метода решения задач оптимизации оболочек из. многослойных композитов — метода обобщенных структурных параметров, применение которого позволяет получить наиболее полную информацию об опти.чальных проектах широкого класса практически важных задач оптимизации. Содержащиеся в книге результаты могут быть использованы для инженерного проектирования оболочек из волокнистых композитов. Табл. 23, ил. 58, библиогр. 181 назв.  [c.4]

Вводные замечания. В отличие от критериев потери З стойчивости, формулируемых через интегральные характеристики конструкции (критические нагрузки и частоты собственных колебаний) и имеющих поэтому интегральный характер, критерии разрушения конструкции, точнее, критерии разрушения конструкционного материала, имеют локальный характер. Действительно, разрушение по своей сути есть нарушение сплошности, целостности конструкционного материала, т. е. фундаментальное изменение свойств отдельных элементов его микроструктуры, проявляющееся, однако, в той или иной степени на всех структурных уровнях конструкционного материала. Вследствие этого оценка состояния конструкции по критериям разрушения любого структурного уровня сводится к анализу полей деформаций или напряжений в отдельных точках занимаемого ею пространства. Исследование полей, определяющих НДС конструкции, в общем случае связано с большим объемом вычислительных работ, что является принципиальным препятствием к использованию такого подхода при решении ряда практических задач и в первую очередь задач оптимального проектирования оболочек из композитов. В связи с этим представляются важными поиск и применение средств приближенного анализа конструкций на прочность. Поскольку процесс разрушения конструкций из композитов оказывается весьма сложным явлением (см. 1.9.1), то характер принимаемых в расчете на прочность приближений должен, очевидно, определяться конкретным содержанием рассматриваемой задачи. С общих позиций заметим следующее приближенный анализ конструкции на прочность может основываться на использовании  [c.151]

Многослойные конструкции находят широкое применение в различных отраслях современной техники. Это связано, прежде всего, с тем, что умелым сочетанием полезных свойств отдельных слоев можно обеспечить не только высокую удслы у ) жесткость и прочность изделия, но и удовлетворить требованиям по таким характеристикам, как теплопроводность, термостабильность, герметичность, радиопрозрачность, коррозионная стойкость и многим другим. Для достижения этих целей при подборе слоев конструктор может использовать самые различные материалы металлические сплавы, композиты, пластмассы, пенопласты, керамики, резины и т. д. Однако следует отметить, что наличие требуемого набора исходных материалов является только необходимым, но не всегда достаточным условием. Для полной реализации возможностей, заложенных в самой идее многослойной конструкции, необходимо кроме незаурядной изобретательности проявить также умение опираться на надежные методы расчета, позволяющие прогнозировать свойства и поведение будущей конструкции. Без такого анализа практически невозможно создать конструкцию, удовлетворяющую требуемому комплексу физико-механических характеристик.  [c.3]

В целом развитие процесса разрушения в объемной структурной модели композита может принимать разнообразные направления от нормального действия нагрузки до направления, параллельного волокнам (при их отслоениях). Но непосредственная реализация объемных моделей на ЭВМ связана с необходимостью оперировать трехмерными массивами чисел, что в ряде случаев требует подключения дополнительных запоминающих устройств и ведет в результате к существенному увеличению затрат машинного времени. Вместе с тем для решения многих практических задач весьма эффективным является применение квазиобъемных имитационных моделей процессов разрушения в композитах.  [c.179]

Еще одна важная проблема связана с обоснованием применимости модели сплошной среды к изучению биологических материалов. Для однородных материалов применение такой модели связано с отказом от рассмотрения моле1 лярного строения реального тела и переходом к феноменологическому описанию его свойств, что существенно упрощает решение практических задач о макроскопическом деформировании гомогенных материалов. Для композитов переход к модели сплошной среды более сложен, что связано с появлением новых структурных уровней. Известно, что свойства композитного материала определяются как свойствами отдельных компонентов, так и, в значительной мере, характером их структурного взаимодействия. Но так как рассмотрение механического поведения каждого армирующего волокна в отдельности при анализе всей системы не только невозможно, но и нецелесообразно, то армирующие волокна очень часто как бы размазываются по всему объему тела. Тем самым композитная гетерогенная среда рассматривается как однородная, но наделенная новыми, интегральными свой-  [c.479]

В последние годы все более широкое распространение в металлообработке получают фрезы, оснащенные композитом. Эффективными областями их применения являются предварительная и околчательная (в том числе тонкая) обработка деталей из серых и высокопрочных чугунов с твердостью НВ 150—300 и закаленных сталей практически любой твердости.  [c.173]


Смотреть страницы где упоминается термин ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КОМПОЗИТОВ : [c.186]    [c.334]    [c.25]    [c.329]    [c.9]   
Смотреть главы в:

Справочник по композиционным материалам Книга 2  -> ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КОМПОЗИТОВ



ПОИСК



Композит



© 2025 Mash-xxl.info Реклама на сайте