Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластики волокнистые

Армированные пластики Волокнистый наполнитель, нитевидные кристаллы, нити, текстиль, бумаги Термопласты, реактопласты, родная, эластомеры угле-  [c.769]

В армированных пластиках (КВМ) армирующий волокнистый наполнитель воспринимает механические напряжения, определяя механические свойства материала — прочность, деформативность, жесткость. Полимерная матрица (связующая, находящаяся в межволоконном пространстве) служит для распределения механических напряжений между волокнами (частично она также воспринимает механические напряжения) и, что очень важно, определяет монолитность материала. Следует заметить, что в армированных пластиках (волокнистых композитах) фактически работают отдельные волокна и контактирующие с матрицей, но не нити или другие текстильные структуры в целом. Те или иные текстильные структуры важны прежде всего для создания необходимой ориентации волокон в материале или изделии.  [c.771]


Прочность пластиков увеличивают, вводя волокнистые плп тканевые наполнители, теплопроводность — вводя. металлические порошки (РЬ, свинцовая бронза).  [c.385]

Слоистые пластики представляют особую группу пластмасс, получаемую из волокнистой основы, пропитанной синтетическими смолами и расположенной послойно. Большинство слоистых пластмасс изготовляется на фенольных смолах.  [c.100]

Широкое применение в качестве конструкционных и электроизоляционных материалов имеют слоистые пластики, в которых наполнителем является тот или иной листовой волокнистый материал. К этим материалам относятся гетинакс, текстолит и др.  [c.152]

Термин высокопрочные волокнистые материалы , так как он используется в зтой главе, относится к материалам, состоящим из слоев металла или пластика, содержащих волокна, в которых отношение прочности к плотности (удельная прочность) или модуля к плотности (удельный модуль) значительно выше, чем в обычных конструкционных металлах.  [c.79]

Волокнистые композиционные материалы могут быть изотропными и анизотропными в зависимости от ориентации волокон. Матрица, как правило, изотропна в том смысле, что ее свойства одинаковы во всех направлениях. Если волокна расположены хаотически, то прочностные и упругие свойства композиционного материала также изотропны в плоскости материала (так как армированные пластики, использующиеся в строительной промышленности, имеют тонкие сечения, то их свойства в направлении, перпендикулярном плоскости материала, можно не рассматривать),  [c.264]

В массе своей (Композиционные материалы с волокнистой арматурой и металлической матрицей еще не вышли за рамки лабораторных исследований опытно-промышленного использования. Но некоторые из них уже применяются в практических целях свинец, серебро и алюминий армируют стальной проволокой, алюминий — стекловолокном, медь — вольфрамовыми волокнами. Объем производства композиционных материалов на основе пластиков и стекловолокна достиг завидной величины, а о масштабах производства железобетона и говорить е приходится.  [c.129]

Физические, в частности, механические свойства пластиков с волокнистыми наполнителями и слоистых пластиков сведены в табл. 1.28.  [c.800]

Пластмассами называются материалы органического и неорганического происхождения, в состав которых входят вещества с большим молекулярным весом (высокомолекулярные), обладающие на определенной стадии переработки пластичностью и текучестью. Пластмассы состоят из собственного пластика (смолы), играющего роль связующего вещества, и наполнителя, вводимого с целью повышения физико-механических свойств изделия. Наполнителями служат волокнистые вещества (древесные опилки, бумага, фанерный шпон, ткань, асбест, отходы хлопка и т. д.) или порошкообразные материалы иногда пластмассы (например, полиамиды) вообще не содержат наполнителя. В состав пластмасс могут входить также следующие вещества 1) пластификаторы, понижающие температуру размягчения и повышающие пластичность 2) красители 3) стабилизаторы, способствующие сохранению пластиками основных свойств 4) специальные вещества (например, светящиеся составы).  [c.42]


Обычно внешний вид наполнителя (при его доминирующем содержании) определяет тип пластиков. По этому признаку они подразделяются на композиционные (с порошковыми, гранулированными и волокнистыми наполнителями), а также листовые и слоистые армированные пластики. В зависимости от химического состава, вида и количественного содержания наполнителей изменяются технологические свойства исходных композиций полуфабрикатов (текучесть, содержание летучих, усадочные явления и т. п.), механические свойства, стоимость и внешний вид готовых деталей, а также их теплофизические, электроизоляционные и химические свойства.  [c.12]

Механическая прочность (предел прочности при растяжении, модуль упругости) ненаполненных полимеров или пластиков, имеющих порошкообразные или волокнистые (органические) наполнители, значительно ниже, чем у слоистых пластиков или пластиков, армированных стеклянным волокном.  [c.13]

Волокнистые и слоистые пластики хорошо противостоят действию ударных и динамических нагрузок. Удельная усталостная прочность стеклопластиков близка к аналогичным характеристикам для металлов. Несмотря на то, что абсолютные значения показателя усталости стеклопластиков и других слоистых пластиков ниже,  [c.13]

Стойкость армированных пластиков к ударам возрастает с увеличением длины волокон наполнителя. Следовательно, самую высокую ударную вязкость имеют смолы, армированные тканью и ориентированными в одном направлении стеклянными волокнами, более низкую ударную вязкость имеют армированные пластики с более короткими волокнистыми наполнителями, а самую низкую ударную вязкость имеют смолы, армированные короткими целлюлозными или стеклянными волокнами (фенолформальдегидные, эпоксидные и полиэфирные прессмассы) [7—10].  [c.70]

Особенно отрицательно влияет повышенная температура на волокнистые материалы с целлюлозным наполнителем и материалы типа фибры, в то же время такие пластики, как  [c.304]

Как уже отмечалось, на механические свойства пластмасс большое влияние оказывают наполнители. Наиболее механически прочными являются пластики с волокнистыми наполнителями в виде параллельно расположенных ориентированных волокон или нитей (так называемые слоисто-волокнистые анизотропные материалы типа СВАМ) в виде параллельных или перекрещивающихся листовых волокнистых материалов (стеклянные, хлопчатобумажные, асбестовые ткани, древесный шпон, бумага), а также в виде хаотично расположенных волокон, нитей, кусочков пряжи и тканей (стекло-асбо- хлопчатобумажные волокниты, прессматериалы из пропитанных кусочков различных тканей и древесного шпона).  [c.390]

Оснастку из слоистых пластиков можно получать выкладкой слоев, причем волокно должно быть так ориентировано, чтобы оно наилучшим образом соответствовало расширению изделий, которые будут формовать. Обычно для этих целей применяют стеклянное или графитированное волокно. Наиболее выгодно армировать ткаными волокнистыми материалами.  [c.87]

В зависимости от наполнителя и степени его измельчения все материалы делят на три типа с порошкообразным наполнителем (пресс-порошки) с волокнистым наполнителем (волокниты, асбомассы и др.) и с листовым наполнителем (слоистые пластики).  [c.38]

Кроме перечисленных групп, в электротехнике также широко используются воскообразные диэлектрики (парафин, вазелин), волокнистые материалы (дерево, бумага, картон, фибра, текстильные материалы), слоистые пластики (гетинакс, текстолит), эластомеры (натуральный и синтетический каучуки), стекла, ситатлы, керамические материалы (фарфор и др.), слюда, асбест и ряд других.  [c.133]

Пластические массы (текстолит, гетинакс, стеклотекстолит, древесно-волокнистые пластики, волокнит, винипласт, оргстекло, полиэтилен, пенопласт, эпоксидная смола и многие другие) используются в качестве отделоч1Ных материалов и для различных изделий (трубы, краны, соединительные части, детали интерьеров, машин и конструкций и т. д.). Они получают все более широкое применение 1в машиностроении, строительстве, энергетике и многих других отраслях техники, что делает необходимым изучение основных механических свойств пластмасс и методов определения их главных механических характеристик. Следует иметь в виду, что некоторые механические свойства пластмасс весьм.з сильно изменяются (ухудшаются) под влиянием повышенной температуры, длительных нагрузок, влажности, циклических напряжений и времени. Эти изменения, как правило, необратимы. Для  [c.157]


Для простоты рассмотрим материал, оси Xi которого направлены по осям материальной симметрии, а плоскость xплоскостью изотропии. Таким условиям удовлетворяют, например, однонаправленные волокнистые пластики с изотропными фазами и случайным распределением сечений параллельных оси Xi волокон в плоскости (х2,хз). В одноин-дексных обозначениях [108] уравнения (15) для обобщенных опытов на ползучесть принимают вид [80]  [c.109]

Нелинейное поведение волокнистых пластиков и гранулированных эластомеров, вызванное микроструктурными повреждениями, качественно похожи (см. Халпин [39]). Интересно, например, заметить, что в композитах обоих видов обнаруживается значительно большее затухание, чем предсказывает линейная теория, при относительно низких вибрационных напряжениях (ср., например, Нильсен и Ли [74], Шепери и Канти [96], Шульц и Цай [101]). У волокнистых пластиков многие повреждения проявляются в виде четко выраженных трещин. Тем не менее количественных соотношений, выражающих зависимость между микроструктурным строением и поведением материала с течением времени, для волокнистых пластиков имеется гораздо меньше, чем для гранулированных композитов.  [c.185]

Интересная особенность этого уравнения состоит в том, что оно удовлетворяет условию пропорциональности (2) (это легко проверить, положив е = се, где с = onst), но не условию суперпозиции. Напомним, что поведение волокнистых пластиков,  [c.189]

Трехмерная теория для гранулированных композитов также предложена Феррисом [27] она подтверждается немногочисленными пока экспериментами [28]. Кроме того, Шепери [92, 94] использовал неравновесную термодинамику и механику разрушения, чтобы получить трехмерное представление, включающее -эффекты и обратимой нелинейности, и микроструктурных повреждений. Однако последняя теория с двумя типами нелинейности и с наличием или с отсутствием обусловленной пустотами дилатации пока еще не проверена и непригодна для практического применения. Более того, справедливость аналогичной теории (Шепери и др. [98]) для волокнистых пластиков не доказана в настоящее время необходима хорошо продуманная программа одномерных и многомерных опытов для оценки существующих теорий.  [c.189]

ASТМ Д-635, возгораемость. Это единственный вид испытаний, разработанный специально для пластиков. Остальные испытания применяются в равной степени ко всем материалам, в том числе и к пластикам. Один конец горизонтального стержня размерами 6,35 X 12,7 X 127 мм из пластика помещается на глубину 25 мм в пламя бунзеновской горелки на 30 с и отмечается скорость, с которой он горит. Если образец не воспламеняется после первых 30 с, испытание повторяют. В общем случае рекомендуется пластики, горящие со скоростью более чем 63,5 мм/мин, исключить из числа используемых в строительной промышленности несмотря на то, что эта скорость называется умеренной. Материал, горящий со скоростью менее чем 38 мм/мин, считается горящим медленно. Следует отметить, что введение в состав материала наполнителей или волокнистых упрочнителей может заметно ускорять или замедлять скорость его горения.  [c.299]

Установлено, что ущерб, наносимый коррозией американской промышленности, составляет около 6—10 млн. долларов в год 60% выпуска продукции сталелитейной промышленности идет на замену различных изделий, поэтому использование армированных пластиков в данной области должно способствовать сохранению материалов. Не следует ожидать, что применение одного какого-либо материала способно решить все проблемы, связанные с коррозией, однако в последние десятилетия использование высокопо-лимеров, армированных подходящим волокнистым наполнителем, например стекловолокном, или другими наполнителями, обеспечивает решение многих проблем, связанных с процессом коррозии. В конечном счете, инженер имеет в своем распоряжении высокопо-лимеры с таким широким диапазоном свойств, что он практически может создавать системы материалов, удовлетворяющих специальным техническим требопаниям.  [c.311]

Основная цель данной главы состоит в освещении фундаментальных основ изменчивости и масштабного эффекта прочности хрупких и вязких однофазных материалов и особенно пластиков, состоящих из жестких, хрупких армирующих материалов, погруженных в растяжимые матрицы. Вследствие этого не будет возможности охватить во всех деталях многие интересные достижения в более традиционных аспектах разрушения композитов. Интересующемуся читателю можно рекомендовать некоторые другие главы данного тома и дополнительно следующие обзоры по прочности композитов Келли [15] — общее введение в теорию прочности волокнистых композитов Кортен [7, 8] — детальное обсуждение вопросов прочности пластиков, армированных стеклянными волокнами Розен и Дау [31] и Тетельман [35] — детальные обсуждения некоторых вопросов прочности композитов и подходов механики разрушения к разрушению композитов Тьени [34] — сборник статей различных исследователей, в которых представлено много примеров структуры и статистических особенностей разрушения отдельных композитов, таких, как бетоны, пенопласты, и неориентированных матов, таких, как бумага.  [c.167]

Вопросами внедрения пластмасс в конструкции различных железнодорожных вагонов, совместно с ВНИИВ, занимаются Ленинградский им. Егорова, Брянский машиностроительный. Рижский, Алтайский, Крюковский и другие вагоностроительные заводы. К основным достижениям в этой области относятся внедрение неметаллических композиционных тормозных колодок взамен чугунных, что позволяет эксплуатировать вагоны со скоростями 120—160 км/час и заметно сократить тормозной путь применение для внутренней отделки пассажирских вагонов рулонного и профильного поливинилхлорида, повинола, пенополиуретана и губчатой латексной резины изготовление из капрона, ударопрочного полистирола, полиэтилена, слоистых пластиков различной арматуры, диванов, окон и других элементов кузова внедрение стеклопластиков для полов туалетных помещений взамен метлахских плиток применение в пассажирских и грузовых вагонах в большом объеме древесно-волокнистых плит.  [c.221]

Пластмассы — наполненные полимерные материалы. Пластмассы по виду наполнителя подразделяются на газонаполненные или ячеистые пластмассы (нено- и норопласты), порошковые пластмассы, волокнистые пластмассы и текстолиты и сложные пластики. Их свойства в основном определяются свойствами матрицы, т. е. полимера, и ее адгезией к поверхности наполнителя и дифференцированы в зависимости от вида наполнителя. Газовый наполнитель ослабляет исходный полимер. В порошковых пластмассах разрывная прочность не повышается в пластмассах, армированных волокнами более прочными, чем матрица,— повышается анизотропно вдоль волокон. При ортогональном расположении волокон или армировании полотном, сеткой, пленкой в их плоскости прочность носит более изотропный характер, в поперечном же направлении прочность определяется теми же факторами, что и порошковые пластмассы.  [c.232]


Волокнистые наполнители (хлопковые очесы, стеклянное волокно) применяют для увеличения прочности и ударной вязкости. Наибольшее распространение среди волокнистых пластиков получили стекло-в о л о к н Н Т ы, представляющие собой композицию отверждающихся синтетических смол со стеклянными волокнами толщиной 5—10 мкм, обладающими большой прочностью и высоким модулем упругости. Введение стекловолокна повышает прочность пластиков в 3—4 раза.  [c.231]

Свойства прессовочного материала определяются главным образом его основными составными частями связующим и наполнителем. Механические свойства при одном и том же связующем в основном зависят от наполнителя. Наиболее прочными из фенольноальдегидных прессматериалов являются тек-столиты, имеющие в качестве наполнителя хлопчатобумажную и стеклянную ткань, бумагу или древесный пластик на основе шпона, менее прочными—карболитовые порощки (К-18-2 и др.), наполнителем которых служит древесная мука промежуточное положение занимают пресскомпозиции с неориентированными волокнистыми наполнителями.  [c.678]

Резьбы малого диаметра (менее 2,5 мм), как правило, получают механическим путем, а не прессованием, так как резьбовые знаки для таких резьб имеют малую механическую прочность и не вы-, держивают усилий прессования. Кроме того, шаг и глубина такого профиля соизмеримы с величиной частиц наполнителя (даже порошкообразного), поэтому резьба будет оформляться только в результате отжима смолы и будет хрупкой. Это относится также и к мелким резьбам с шагом 0,5 мм и меньше. Наименьший диаметр резьбы, оформляемый прессованием, в значительной мере зависит от типа материала и его технологических свойств. Наименьший диаметр прессованной резьбы из порошкообразных композиционных пластиков допускается 2,5, из волокнистых — 4 и из слоистых пластиков — 5 мм. При прессовании резьбовых деталей шаг резьбы искажается, и полностью компенсировать это искажение поправкой шага резьбового знака не удается.  [c.65]

Ввиду анизотропности и плохой теплопроводности наполненных пластмасс (особенно содержащих волокнистые наполнители) необходимо соблюдать определенные правила при их эксплуатации и механической обработке — применять охлаждающие смазки, пользоваться специальным инструментом и т. п. При обработке и эксплуатации деталей из слоистых пластиков нельзя прилагать нагрузки в сторону, способствующую расслаиванию или сдвигу листового наполнителя и т. д. Под влиянием длительных механических нагрузок в статических или динамических условиях происходит усталостное разрушение пластмасс. На усталостную прочность пластмасс (так же как и на другие их свойства) сильное влияние оказывают химическое строение полимера, природа и вид наполнителя и их количественное соотношение. Постоянно действующие (статические) нагрузки вызывают ползучесть пластмассовых деталей наиболее явно она проявляется у термообратимых пластиков (оргстекло и другие термопласты). В наименьшей степени ползучесть проявляется у стеклотекстолнтов, полученных с участием полимерных связующих термонеобратимого типа.  [c.390]

Для деталей внутреннего оборудования автобусов, пассажирских вагонов широкое применение нашли декоративный бумажнослоистый пластик, водостойкая клееная фанера, твердые древесно-волокнистые плиты и облицованные древесно-стружечные плиты.  [c.100]

По виду наполнителя пластмассы делят на порошковые (кар-болиты) с наполнителями в виде древесной муки, графита, талька и др. волокнистые с наполнителями в виде очесов хлопка и льна (волокниты), стеклянного волокна (стекловолокниты), асбеста (асбоволокниты) слоистые, содержащие листовые наполнители (листы бумаги в гетинаксе, хлопчатобумажные, стеклянные, асбестовые ткани в текстолите, стеклотекстолите и асботекстолите, древесный шпон в древеснослоистых пластиках) газонаполненные (наполнитель — воздух или нейтральные газы — пено- и поропласты).  [c.450]

В последние годы началось широкое применение термопластичных высокотеплостойких полимеров в качестве матриц для волокнистых ПКМ. Для термопластов характерно сочетание высоких прочности и теплостойкости [суперконструкционные пластики (рис. 11.2)] с высокими ударной прочностью, трещинностойкостью  [c.136]

Электроизоляционный слоистый пластик — электроизоляционный материал, состоящий из слоев волокнистого наполнителя, связанных термореактнв-ным связующим. Выпускается листовой электроизоляционный слоистый пластик в виде листов и фасонный электроизоляционный слоистый пластик в виде различных форм поперечного сечения — стержней, трубок, цилиндров. В зависимости от вида волокнистого наполнителя различают гетинакс, текстолит, асботекстолит, ас-богетинакс, стеклотекстолит.  [c.587]

Современные методы получения и переработки армированных пластиков получили развитие и применение в процессе разработки стеклопластиков. Для формования углепластиков используются аналогичные методы или их улучшенные варианты. В последнее время наблюдается тенденция к сочетанию в технологическом процессе нескольких методов переработки, которые ранее применялись по отдельности. Например, нередко метод намотки используют в комбинации с процессом получения однонаправленных профильных материалов волокнистого пластика. Рассмотрим несколько типичных методов переработки углепластиков.  [c.83]

Однонаправленный материал. Если известно распределение напряжений в элементах конструкций, то для расчета их прочности необходимо знать прочность исходного материала. Обычно материал в изделии находится в сложном напряженном состоянии. Поэтому для расчета прочности конструкции необходимо знать не только его прочность при таких простых случаях напряженного состояния, как растяжение или сжатие, но и прочность при сложном напряженном состоянии, которая является функцией компонент напряжений. Для изотропных материалов широко используются, например, критерии Мизеса, критерии Треска и т. д. Для анизотропных материалов, таких, как однонаправленные волокнистые пластики, используют, например, условия Хофмана [3]  [c.184]

Металлокомпозиты с волокнистым упрочнителем, в отличие от армированных пластиков, имеют ряд особенностей хорошую электро- и теплопроводность, влагостойкость, широкий диапазон рабочих температур, повышенную жесткость и прочность однонаправленных материалов в поперечном направлении и при сдвиге, своеобразие механизмов разрушения, а также особенности их деформирования при термомеханических воздействиях и др.  [c.234]

Класс нагревостойкости В (ТИ 130) материалы на основе щипаной слюды, слюдопластов и слюдинитов, в том числе с бумажной или тканевой органической подложкой, стеклоткани и стеклолакочулки, асбестовые волокнистые материалы, изоляции эмалированных проводов, пластмассы с неорганическим наполнителем, слоистые пластики на основе стекловолокнистых асбестовых материалов, термореактивные синтетические компаунды, асбоцемент.  [c.166]

Класс нагревостойкости F (ТИ 155) включает материалы на основе щипаной слюды, слюдинитов и слюдопластов без подложки или с неорганической подложкой, стекло волокнистую и асбестовую изоляцию проводов, стеклоткани и стеклолакочулки, слоистые пластики на основе стекловолокнистых и асбестовых материалов При пропитке применяются соответствующие данному классу нагревостойкости лаки и смолы.  [c.166]


Слоистые пластики относятся к разновидности композиционных пластмасс, в которых в качестве наЬолнителя используются листовые волокнистые материалы. К слоистым пластикам относятся гетинакс и текстолит.  [c.225]

Напыление пластмассовых порошков осуществляют с использованием газопламенных горелок (рис. 9 11). Непрерывные производственные процессы предусматривают применение роботизированных автоматов для напыления (рис. 9.12). Изделия из волокнистых ПКМ изготавливают прямым и литьевым прессованием, литьем под давлением. Предварительная намотка волокон осуш ествляется на вращающуюся оправку с контролируемым углом и расположением армирующего материала. Полиэфирные смолы и стекловолокна являются главными компонентами КМ. Для сосудов высокого давления в качестве связующего используют эпоксидные смолы. Производство профильных изделий из волокнистых пластиков аналогично экструзии термопластов. Этот процесс называется пултрузия и осуществляется на специальных машинах для изготовления труб и изделий сложного профиля.  [c.160]

Эта технология производства конструкционных профильных изделий из одноосно-ориентированных волокнистых пластиков непрерывным способом, например на машинах типа Гластрудер (рис. 17.1) фирмы Гоулдзуэрди энджиниринг , является точной аналогией экструзии алюминия или термопластов. Во всех трех случаях производятся профильные изделия с постоянным поперечным сечением из соответствующего материала.  [c.239]


Смотреть страницы где упоминается термин Пластики волокнистые : [c.300]    [c.190]    [c.182]    [c.163]    [c.42]    [c.59]   
Технология холодной штамповки (1989) -- [ c.16 ]



ПОИСК



Волокнистость

Листовые пластмассы. Слоистые и волокнистые пластики

Пластики

Пластики - Применение 1. 190 - Свойств древесно-волокнистые

Пластики однонаправленные волокнистые



© 2025 Mash-xxl.info Реклама на сайте