Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тело абсолютно классическое

Уравнением теплопередачи является уравнение Стефана — Больцмана. Однако это уравнение в его классической форме отображает случай, когда температуры излучающего и лучевоспринимающего тел одинаковы по всей их поверхности, сами эти тела абсолютно черны, а среда, разъединяющая их, вполне прозрачна для тепловых лучей. В топке эти условия не соблюдаются по следующим причинам  [c.307]

Герцем в рамках теории упругости решена фундаментальная контактная задача статики. Приняв допущение, что зависимость между местным упругим перемещением и контактным усилием при ударе имеет такой же вид, как в статике, пренебрегая силами инерции и считая тела абсолютно твердыми, он впервые раскрыл закономерности упругого удара. В противоположность классической теории теория Герца основана на предположении доминирующего значения локальных эффектов, возникающих в зоне касания соударяющихся тел. Однако она применима лишь, когда продолжительность удара значительно превышает время прохождения упругих волн в прямом и обратном направлениях через соударяющиеся тела.  [c.7]


Вычислением спектрального распределения энергии, излучаемой абсолютно черным телом, занимались многие физики XIX в. Наиболее известны исследования Рэлея и Джина, которые вывели спектральное распределение излучения абсолютно черного тела из классического закона равнораспределения энергии по степеням свободы. Они установили, что полученные таким путем выводы согласуются с экспериментом только в длинноволновом пределе и что в коротковолновом пределе результаты приводят к знаменитой ультрафиолетовой катастрофе — спектральному распределению, плотность которого неограниченно возрастает при стремлении длины волны к нулю.  [c.458]

Экспериментальные данные об энергии могут быть получены по испусканию или поглощению веществом излучения. Такие сведения о тепловом излучении и атомных спектрах накапливались в течение многих лет. Ранние попытки объяснить наблюдаемое тепловое излучение, применяя классические законы Ньютона к атомным системам, были только отчасти удовлетворительны. Например, в излучении абсолютно черного тела количество излученной энергии для коротких волн мало оно возрастает с увели-  [c.70]

В классической механике такими абстракциями или моделями являются по существу все вводимые исходные положения и понятия. Они учитывают то основное, определяющее, что существенно для рассматриваемого механического движения и позволяет его строго охарактеризовать и изучить. Так, например, вместо реальных материальных тел в механике рассматривают такие их абстрактные модели, как материальная точка, абсолютно твердое тело или сплошная изменяемая среда, абстрагируясь от учета в первом случае формы и размеров тела, во втором— го деформаций, в третьем — молекулярной структуры среды. Но только построив механику такого рода моделей, можно разработать методы, позволяющие изучать с пригодной для практики точностью равновесие и движение реальных объектов, проверяя в свою очередь эту пригодность опытом, практикой.  [c.6]

Условимся называть континуальное множество геометрических точек, расстояния между которыми фиксированы, геометрической твердой средой. Если геометрическая твердая среда задана, то положение произвольной (не связанной с этой средой) геометрической точки будет характеризоваться той точкой среды, с которой рассматриваемая точка совпадает. В этом смысле геометрическую твердую среду можно принять за геометрическую систему отсчета. Бессмысленно было бы пытаться задать положение геометрической твердой среды в пустом однородном и изотропном пространстве. В то же время геометрическую твердую среду можно связать с каким-либо реальным объектом, находящимся в таком пространстве, например с каким-либо материальным телом. Но объектов такого рода много, так что геометрическая твердая среда не единственна и можно ввести множество таких сред, каждая из которых будет абсолютно проницаемой для точек другой среды. Тогда можно определить положение какой-либо геометрической твердой среды относительно любой другой геометрической твердой среды, определив положение каждой точки первой среды относительно второй. В отличие от пустого однородного и изотропного пространства, в каждой геометрической твердой среде может быть различным образом задана система координат как совокупность чисел, которые определяют положение каждой точки этой среды по отношению к некоторым специально выделенным базовым , или основным , точкам. В классической кинематике рассматриваются трехмерные твердые геометрические среды, т. е. среды, в которых для определения положения точки достаточно указать для нее три таких числа в некоторых случаях вводятся в рассмотрение вырожденные среды — двумерные и одномерные.  [c.12]


Рассмотрение процесса удара по существу требует выхода за рамки классической механики — отказа от схемы абсолютно твердого тела и перехода к схеме деформируемого тела. В зависимости от степени восстановления недеформированного состояния удары разделяются на неупругие, частично упругие и упругие.  [c.547]

На рис. 14.4 показаны экспериментальное спектральное распределение энергии излучения абсолютно черного тела при постоянной температуре (сплошная кривая /) и теоретическая кривая Рэлея— Джинса (пунктирная кривая 2). В рамках классической физики не удается, как это мы видели, описать теоретически всю экспериментальную кривую другими словами, невозможно определить явный вид функции Кирхгофа при любой температуре и частоте. Эта задача в начале нашего века (1900 г.) была успешно решена М. Планком.  [c.331]

Таким образом, изучение движения абсолютно твердого тела занимает особое и самостоятельное место в классической механике.  [c.220]

В этой главе,. завершающей изложение основ электромагнитной теории света, прежде всего рассмотрены классические опыты Физо и Майкельсона, проведенные в конце XIX в. и многократно повторявшиеся в XX в. Цель экспериментов состояла в выяснении возможности установления существования абсолютного движения , т.е. движения тел относительно некоторой среды ( светоносного эфира ), которая может служить единой системой отсчета. Неоднозначность толковании прецизионных опытов (в частности, отрицательного результата знаменитого опыта Майкельсона) нацело снимается при формулировке Эйнштейном в 1905 г. исходных постулатов специальной теории относительности, а дальнейшее развитие этой теории привело к кардинальным изменениям всей классической физики.  [c.363]

Теория относительности делает значительный шаг вперед по сравнению с классической физикой, для которой пространство и время были самостоятельными, не связанными друг с другом категориями. Рассматривая время и пространство в их неразрывной связи, теория относительности дает более глубокие представления о пространстве и времени, являющиеся по сравнению с представлениями классической физики дальнейшим приближением к соотношениям объективного мира. Развитие этих представлений мы имеем в так называемой общей теории относительности, которая рассматривает не только равномерное, но и ускоренное движение систем отсчета. Общая теория относительности приходит к выводу о зависимости свойств пространства и времени от распределения материальных масс. Таким образом, метафизическое представление об абсолютном времени и абсолютном пространстве, существующих независимо от материи и наряду с нею ( вместилище тел и чистая длительность , как утверждал Ньютон), заменяется представлениями, рассматривающими пространство и время как формы существования материи, в соответствии с концепцией диалектического материализма.  [c.468]

Движения материи развиваются в пространстве и времени, представляющих собой неотъемлемые атрибуты движения материи, а следовательно и всех явлений мира. В порядке допустимого отвлечения от действительности можно себе представить существование чисто геометрического абсолютного пространства и протекающего в нем не зависящего пи от каких физических условий абсолютного времени. Такого рода абстракцию допускает классическая механика Ньютона — Галилея, которая пользуется понятием о пространстве как о некоторой абсолютно неизменяемой, безгранично во все стороны распространяющейся сплошной совокупности точек, аналогичной по схеме абсолютно твердому телу. По отношению к таким системам — их иногда называют системами отсчета — и рассматриваются перемещения тел в их механическом движении. Эти системы отсчета могут быть либо неподвижными по отношению к одной основной системе, принимаемой условно за абсолютно неподвижную, либо двигаться произвольным образом по отношению к ней.  [c.10]

Основные законы классической механики были сформулированы Ньютоном как законы движения по отношению к некоторой абсолютно неподвижной системе — абсолютному пространству — или любой другой инерциальной или галилеевой системе, движущейся по отношению к абсолютному пространству поступательно, прямолинейно и равномерно за время, в течение которого движение протекает, Ньютон принимал абсолютное время , не зависящее от движения тел и систем отсчета.  [c.10]


При стационарном тепловом процессе, рассматриваемом ниже, предполагают, что полная деформация тела является суммой упругой деформации, связанной с напряжениями обычными соотношениями, и чисто теплового расширения, соответствующего известному из классической теории теплопроводности температурному полю. В теории термоупругости обычно накладывается ограничение на величину термического возмущения приращение температуры предполагается малым по сравнению с начальной абсолютной температурой. Снятие этого ограничения не нарушает предположения о малости деформаций (перемещений), но  [c.90]

Итак, второе начало классической термодинамики есть утверждение о существовании и возрастании некоторой функции состояния тел и сложных систем — энтропии. Дифференциал энтропии есть полный дифференциал дЗ, определяемый в обратимых процессах как отношение подведенного извне элементарного количества теплоты б(3 обр к абсолютной температуре тела Т  [c.56]

Невозможность существования чисто неупругого рассеяния тесно связана с квантовомеханическим эффектом дифракционного рассеяния, уже упоминавшегося в гл. И, 6. Действительно, пусть рассеиватель поглощает все попадающие в него частицы и, следовательно, является с классической точки зрения поглотителем без рассеяния, т. е. абсолютно черным телом. При прохождении пучка частиц через такой рассеиватель за ним будет оставаться тень. Однако в область этой тени частицы будут попадать за счет дифракции. А раз частица попала в область тени, значит, она отклонилась от своего пути, т. е. претерпела упругое рассеяние. Такое упругое рассеяние называется дифракционным или теневым рассеянием.  [c.126]

В реологии, в частности, изучаются такие представители классических идеальных тел, как твердое тело Гука, жидкость Ньютона и твердое тело Сен-Венана. Первое—идеальное линейно упругое тело—является объектом классической теории упругости, второе — простая , вязкая жидкость — объектом классической гидродинамики, третье—твердое тело, имеющее предел текучести, ниже которого тело является абсолютно твердым, а при достижении которого течет, —изучается в теории идеальной пластичности.  [c.512]

В том случае, когда промежуточные конструкции имеют достаточно большую длину, а агрегаты являются тяжелыми, систему агрегаты—рама нельзя рассматривать как абсолютно твердое тело и применять классическую теорию амортизации. Расчеты показывают, что кроме обычных частот амортизации появляются собственные частоты, обусловленные конечной жесткостью рамы, первая из этих частот в два-три раза выше соответствующей частоты амортизации. По правилам теории амортизации частота основной возмущающей силы также в два-три раза должна быть больше собственной частоты колебаний жесткого амортизированного объекта. Отсюда следует, что подбор амортизации по обычной классической теории приводит к тому, что система будет работать в зоне резонансной частоты, поэтому расчет виброзащитной системы необходимо выполнять с учетом динамических свойств самих агрегатов [37].  [c.352]

Будем считать, что объемные силы отсутствуют, боковая поверхность стержня свободна от напряжений и к его основаниям приложены заданные усилия, удовлетворяющие условиям равновесия абсолютно твердого тела. В такой постановке рассматриваемая задача является обобщением классической задачи Сен-Венана на случай неоднородных стержней.  [c.73]

Такой же недостаток числа уравнений обнаруживается и при попытках решения любых задач о соударениях тел, которым приписывается свойство абсолютной твердости. Нужные для полной обусловленности задачи дополнительные соотношения невозможно найти в рамках классической механики. Такая неопределенность есть следствие чрезмерной схематичности самого понятия об абсолютно твердом теле (или материальной точки). Конечно, достаточно отказаться от этих упрощенных понятий и учесть деформируемость соударяющихся тел, как задача становится вполне определенной. Но строгие решения, которые могут быть получены таким путем, оказываются, как правило, очень сложными (простейший случай рассмотрен ниже в п. 32), и поэтому часто пользуются приближенными способами, позволяющими получить полную систему уравнений без явного учета деформаций.  [c.306]

В еще большей степени проникновению в физику идеи дискретности способствовало создание Максом Планком теории квантов (1900 г.). Изучая тепловое излучение так называемого абсолютно черного тела, Планк обнаружил, что оно не может быть описано обычными (классическими) формулами излучения, но что для этого в соответствующие формулы необходимо ввести особую дискретную постоянную величину — квант дей-  [c.446]

Как уже указывалось выше, классическая физика и термодинамика не могут описать полного спектра распределения энергии излучения абсолютно черного тела. Решение этой задачи оказалось возможным лишь после введения Планком понятия о квантах энергии. Планк показал, что энергия излучается и поглощается не непрерывно, а отдельными дискретными порциями, квантами энергии hv.  [c.17]

Абсолютно черных тел в том понимании, как они были определены в 1-1 и 1-2, в природе не существует. Классической моделью абсолютно черного тела является  [c.283]

По принятому в классической термодинамике определению обратимого процесса для обращения данного процесса (для возвращения рабочего тела в первоначальное состояние), помимо равновесности состояний тела и его сопряжений с внешней средой, необходимо обеспечить обратимость всех внешних воздействий, т. е. необходимо, чтобы все эффекты взаимодействия тела с внешней средой, имевшиеся в прямом процессе, остались в обратном процессе неизменными по абсолютному значению, а изменились бы только их знаки. Остановимся на последнем условии. Нетрудно  [c.57]


Вращательному движению тоже присуще (правда, в несколько иной форме) свойство инерции. Мерой инертности во вращательном движении является момент инерции. Угловая скорость вращающегося тела является величиной, характеризующей его физическое состояние. Она может быть определена безотносительно к системе отсчета, и поэтому в классической механике она всегда абсолютна.  [c.52]

Вся дальнейшая теория строится на основе классической ньютоновской механики в евклидовом пространстве с абсолютным временем. Это обусловлено тем, что размеры, массы и скорости движения твердых деформируемых тел при обработке металлов давлением много меньше, например, размеров и массы Земли и скорости света. Напомним, что евклидовым называется такое пространство, для всех точек которого можно применить единую декартову систему координат.  [c.13]

В физике говорится, что физическое тело не может занять часть простраистна, занятого другим физическим телом. Под телом здесь, по-вндимому, надо понимать трехмерный объект гина геометрического тела, хотя геометрическое тело — абсолютная абстракция, как и все объекты классической геометрии (точки, прямые, плоскости).  [c.19]

Упомянутые выше критические выступления в печати по-видимому связаны с тем, что их авторы ошибочно отнесли понятие о коэффициенте восстановления к числу общих законов механики. Кроме того, они неверно представляют область явлений, подчиненных законам классической механики. Об этом свидетельствует выдержка из монографии Е. В. Александрова и В. Б. Соколинского Одни авторы, а их большинство, базируются на принципах классической механики Ньютона. Другие— исходят из основных положений теории упругости и опираются на теорию Сен-Венана. Первые считают, что тела абсолютно твердые... >.  [c.20]

Силы инерции Ф , и Ф являю ся поправками па не и не рциа л ь пость системы отсчета. Для инерциальной сисгемы отсчета они равны нулю, так как в этом случае абсолютное и относительное движения точки совпадают. Переносная и кориолисова силы инерции участвуют в создании относительного ускорения совершенно так же, как и приложенные силы со стороны материальных тел. Но эти силы инерции, 1Ю определению приложенных сил классической механики, не приложены к материальной точке, так как не участвуют в создании ее ускорения относительно инерциальной системы  [c.261]

Теория Планка, хотя и противоречила духу классической физики, подтверждалась опытными фактами и смогла решить задачу теплового излучения абсолютно черных тел. Следует отметить, что квантовая теория Планка совершенно не нуждается в понятии эфирной среды . Таким образом, к началу XX в. наряду с электромагнитной теорией возродилась корпускулярная теория света, но, безусловно, отличЕ1ая от корпускулярной теории Ньютона.  [c.8]

По Рэлею, число собственных частот, укладывающихся в интервале (v, V + dv), пропорционально объему полости V, квадрату частоты и ширине интервала, т. е. dN Vv4v. Пользуясь законом равномерного распределения энергии равновесной системы по степеням свободы и учитывая, что на каждую колебательную степень свободы в классической физике приходится энергия, равная kT (1/2 kT на кинетическую, 1/2 kT на потенциальную), Рэлей получил следующее выражение для излучательной способности абсолютно черного тела  [c.330]

В 19П7 г. Эйнштейн предложил модель, которая позволила качественно объяснить указанное поведение теплоемкости. При выборе модели он исходил из квантовой гипотезы М. Планка. Планк (1900), решая математически задачу о спектральном распределении интенсивности излучения абсолютно черного тела, выдвинул гипотезу, коренным образом противоречащую всей системе представлений классической физики. Согласно этой гипотезе, энергия микроскопических систем (атомы, молекулы) может принимать только конечные дискретные квантовые зиаче-ния Е=пг, где = 0, 1, 2, 3,... —положительное целое число e = /zv = 7i o — элементарный квант энергии-, v — частота со — круговая частота /г = 2л Й—универсальная постоянная постоянная Планка).  [c.165]

Гипотеза Планка находится в резком противоречии с законами классической физики, потому что согласно этим законам все величины (энергия, импульс, действие) могут иметь произвольные, сколь угодно малые значения и могут меняться непрерывно. Так, по классическим законам осциллятор частоты V может заключать в себе любое количество энергии, поскольку энергия осциллятора пропорциональна квадрату амплитуды. Отсюда следует, что излучающий осциллятор может испускать за единицу времени любое количество энергии. Моделируя теоретически абсолютно черное тело в виде бесконечной совокупности гармонических осцилляторов, каждый из которых дает отдельную монохроматическую линию, а все вместе — сплошное черное излучение, и пользуясь законами, управляющими поведением этих осциллято-  [c.140]

Вытекающие из специальной теории относительпосги следствия многим казались иарадоксальными. Например, из нее следует несостоятельность классических представлений об абсолютном пространстве —в движущихся системах происходит изменение размеров тел. Теория относительносги значительно расширила горизонты науки, она поставила в повестку дня такие фундаментальные философские и физические вопросы, как проблема связи между пространством, временем и матерней. В данном пособии невозможно рассказан, о вытекающих из нее многочис-  [c.134]

При релятивистском обобщении термодинамики, как показали Г. Каллен и Дж. Горвиц , естественнее исходить из выражения для энтальпии. Действительно, в этом случае, как следует из теории относительности, все входящие в выражение (8.8) независимые переменные являются лоренц-инвариантами, тогда как независимые переменные других термодинамических потенциалов имеют либо разные, либо неизвестные законы преобразования. Кроме того, давление в качестве независимой переменной более подходящая величина, чем объем. В классической термодинамике систему можно было заключить в жесткие стенки, но само представление о твердом теле или абсолютно жестких стенках неприемлемо в рамках теории относительности—абсолютно твердое тело передавало бы сигналы с бесконечной скоростью, так как движение, сообщенное одной точке тела, незамедлительно вызовет движение всех остальных точек тела.  [c.151]

Второе начало классической термодинамики формулируется как объединенный принцип существования и возрастания некоторой функции состояния тел и сложных систем — энтропии (термин энтропия предложен Р. Клаузиусом en— в, внутрь и trope или tropos — обращение, путь в целом — обращение внутрь, мера обесценения энергии). Дифференциал энтропии есть полный дифференциал dS, определяемый в обратимых процессах как отношение подведенного извне элементарного количества теплоты SQ gp к абсолютной температуре Т. (в обратимых процессах внутренний теплообмен отсутствует, 5Q = 0).  [c.47]

Иными словами, в мега- и микромире течение времени и протяженность тел зависят от скорости их движения, и структура или геометрические свойства пространства-времени изменяются в saBn HMoi TH от скопления масс вещества и порождаемых ими полей тяготения. При движении со окоростямй, приближающимися к скорость света, время замедляется , а пространство искривляется . Так была установлена ограниченность представлений классической физики об абсолютных , независимых от движущейся материи времени и пространства.  [c.179]


Периодические орбиты. Как правило, уравнения движения динамической системы при произвольных начальных условиях не удается проинтегрировать до конца. Так обстоит дело, в частности, и для задачи трех тел. Мы видели ( 17.10), что даже классификация возможных типов траекторий в общем случае встречает больпше трудности. Однако иногда мы в состоянии найти периодические орбиты или по крайней мере доказать их существование. Пуанкаре в своей классической работе о задаче трех тел придавал особое значение отысканию периодических решений и считал это отправным пунктом для решения общей задачи о классификации и интегрировании ). Траектории могут быть периодическими как в абсолютном смысле (по отношению к неподвижным осям), так и в относительном смысле (по отношению к осям, движущимся определенным образом). Например, в ограниченной задаче трех тел мы говорим о периодических траекториях частиц относительно вращающихся осей.  [c.602]

ЗАКОН Рихмаиа если несколько тел с различными температурами привести в соприкосновение, то между ними происходит теплообмен, который приводит к выравниванию температур тел Рэлея при прочих равных условиях интенсивность рассеянного света обратно пропорциональна четвертой степени длины волны света Рэлея — Джинса лучеиспускательная способность прямо пропорциональна квадрату собственной частоты радиационного осциллятора сложения скоростей <в классической механике абсолютная скорость движения точки равна векторной сумме ее переносной и относительной скоростей в теории относительности проекции скорости тела по осям координат в неподвижной  [c.236]

ПРАВИЛО (Стокса длина волны фотолюминесценции обычно больше, чем длина волны возбуждающего света фаз Гиббса в гетерогенной системе, находящейся в термодинамическом равновесии, число фаз не может превышать число компонентов больше чем на два ) ПРЕОБРАЗОВАНИЯ [Галилея — уравнения классической механики, связывающие координаты и время движущейся материальной точки в движущихся друг относительно друга инерциальных системах отсчета с малой скоростью калибровочные — зависящие от координат в пространстве — времени преобразования, переводящие одну суперпозицию волновых функций частиц в другую каноническое в уравнениях Гамильтона состоит в их инвариантности по отношению к выбору обобщенных координат Лоренца описывают переход от одной инерци-альной системы отсчета к другой при любых возможных скоростях их относительного движения] ПРЕЦЕССИЯ — движение оси собственного вращения твердого тела, вращающегося около неподвижной точки, при котором эта ось описывает круговую коническую поверхность ПРИВЕДЕНИЕ системы <к двум силам всякая система действующих на абсолютно твердое тело сил, для которой произведение главного вектора на главный момент не равно нулю, приводится к динаме к дниаме (винту) — совокупность силы и пары, лежащей в плоскости, перпендикулярной к силе скользящих векторов (лемма) всякий скользящий вектор, приложенный в точке А, можно, не изменяя его действия, перенести в любую точку В, прибавив при этом пару с моментом, равным моменту вектора, приложенного в точку А скользящего вектора относительно точки В ) ПРИНЦИП (есть утверждение, оправданное практикой и применяемое без доказательства Бабине при фраунгоферовой дифракции на каком-либо экране интенсивность диафрагмированного света в любом направлении должна быть такой, как и на дополнительном экране )  [c.263]

В заключение рассмотрим переход уравнений (6-2-34), (6-2-35) к уравнению теплопроводности, так как иереход к уравнению диффузии дан выше. В абсолютно сухом теле отсутствует массоперенос (при а = О, Кц = la = Кп = 0), тогда из (6-2-34), (6-2-35) получается классическое уравнение теплопроводности  [c.411]

В классическом варианте узлового метода в качестве базисных переменных используются з злобые потенциалы (т. е. скорости тел относительно инер-циальной системы отсчета, абсолютные температуры, перепады давления между моделируемой и внешней средой, электрические потенциалы относительно базового узла). Число узловых потенциалов и соответственно уравнений в ММС оказывается равным Р - 1, где Р — число узлов в эквивалентной схеме. Обычно Р заметно меньше а, и, следовательно, порядок системы уравнений в ММС снижен более чем в 2 раза по сравнению с порядком исходной системы.  [c.97]


Смотреть страницы где упоминается термин Тело абсолютно классическое : [c.14]    [c.383]    [c.250]    [c.332]    [c.121]    [c.859]    [c.265]    [c.284]    [c.286]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.513 , c.515 ]



ПОИСК



Газ классический

Классическая интерпретация. Экспериментальные факты. Квантовая интерпретация. Применения комбинационного рассеяния Излучение абсолютно черного тела



© 2025 Mash-xxl.info Реклама на сайте