Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Количество теплоты элементарное

Каноническое распределение, 36, 75, 76 Клапейрона формула, 81 Количество теплоты элементарное, 91 Колмогоров, 16  [c.116]

Как будет показано ниже, элементарное количество теплоты 6Q, так же как и 6L, не является полным дифференциалом в отличие от дифференциала внутренней энергии dU. За этой математической символикой скрыт глубокий физический смысл различия понятий внутренней энергии, теплоты и работы.  [c.14]

В математике доказывается, что дифференциальный двучлен всегда можно превратить в полный дифференциал путем умножения (или деления) на интегрирующий множитель (или делитель). Таким интегрирующим делителем для элементарного количества теплоты 6q является абсолютная температура Т.  [c.19]


В силу сказанного с математической точки зрения элементарная теплота dQ и элементарная работа dL не являются полными дифференциалами параметров состояния, а представляют собой бесконечно малые количества теплоты и работы, переданные в элементарном термодинамическом процессе.  [c.19]

При равновесном процессе нагревания тела элементарное количество теплоты определяем из уравнения (5-8)  [c.70]

Количество теплоты, передаваемое от горячей к холодной жидкости через элементарную поверхность теплообмена lF, определяем следующим уравнением  [c.489]

Это означает, что слева через сечение I — /, где градиент температуры несколько выше, входит больше теплоты, чем выходит через сечение II — II, где градиент температуры меньше. За время dt в элементарном объеме fdx накапливается количество теплоты  [c.150]

Суммарное количество теплоты, которое накапливается в элементарном объеме, составит  [c.150]

В отличие от элементарное количество теплоты dQ можно выразить в виде линейной формы (4.8), в которой представлены дифференциалы всех независимых переменных. Для этого в уравнении (5.1), записанном для бесконечно малых величин  [c.45]

Энтропия 5 —функция состояния термодинамической системы, определяемая тем, что ее дифференциал dS при элементарно. равновесном обратимом процессе равен отношению бесконечно малого количества теплоты dQ, сообщенного системе, к термодинамической температуре 7 системы  [c.99]

Это выражение для элемента количества теплоты имеет такой же вид, как и выражение (1.3) для элементарной работы, причем температура Т является интенсивным параметром теплопередачи (термическая обобщенная сила), а энтропия S—экстенсивным параметром теплопередачи (обобщенная координата). Сходство выражений для >Q и bW обусловлено родственностью природы этих величин и то и другое выражает энергию, получаемую системой (см. 5).  [c.58]

Это выражение для элемента количества теплоты имеет такой же вид, как и выражение (1.3) для элементарной работы, причем темнература Т является интенсивным параметром теплопередачи (термическая обобщенная сила), а энтропия S — экстенсивным параметром теплопередачи (обобщенная координата).  [c.48]

Во всех этих случаях элементарное количество теплоты можно определить как произведение теплоемкости вещества на элементарную разность температур  [c.30]

Подставим это выражение в уравнение (4.9) с учетом элементарного количества теплоты, подводимого в процессе dq = dT. Тогда  [c.43]


Выделим неподвижный элементарный параллелепипед с гранями dx, dt/ и dz и обозначим входящие в него за время da количества теплоты через dQx, dQ y, dQz, а выходящие через dQx, dQ"y, dQl (рис. 2.1), составляющие скорости движения среды w , Wy, Wf и мощность внутренних источников теплоты вт/м .  [c.256]

АБСОЛЮТНАЯ ТЕМПЕРАТУРА КАК ИНТЕГРИРУЮЩИЙ ДЕЛИТЕЛЬ ЭЛЕМЕНТАРНОГО КОЛИЧЕСТВА ТЕПЛОТЫ  [c.65]

В предыдущем разделе было показано, что термически однородная система, состояние которой определяется двумя независимыми параметрами, в каждом из своих состояний характеризуется определенным значением некоторой функции состояния системы, названной энтропией. Дифференциал энтропии связан с элементарным количеством теплоты dQ соотношением  [c.65]

Интегрирующие множители для элементарного количества теплоты.  [c.66]

Убедимся теперь, что элементарное количество теплоты dQ, полученной системой при любом обратимом бесконечно малом процессе, имеет, и притом не один, интегрирующий множитель. Как видно из уравнения (2.60), выражение для элементарного количества теплоты dQ представляет собой линейную форму, содержащую дифференциалы трех переменных 2, а, t.  [c.66]

Абсолютная температура как интегрирующий делитель. Покажем теперь, что среди множества интегрирующих множителей элементарного количества теплоты dQ имеется один, зависящий только от температуры и притом являющийся универсальной (т. е. одинаковой для любых тел) функцией температуры. Чтобы убедиться в этом, рассмотрим термически однородную систему, состоящую из двух частей. Внутренняя энергия системы U, как мы знаем из предыдущего, является аддитивной величиной. Равным образом будет аддитивной величиной и функция У это ясно хотя бы из того, что в уравнение (2.59) У входит в сумме с U. Следовательно, для рассматриваемой системы  [c.68]

Согласно первому закону термодинамики, изменение полной энергии тела равно сумме работы внешних сил 6/1 при данном элементарном процессе и сообщенному телу количеству теплоты 6Q, измеряемому эквивалентной ему работой, т. е.  [c.51]

Примем, что идеальный газ объемом Vi с параметрами pi, v , Ti заключен в цилиндре с подвижным поршнем, его начальное состояние на диаграмме соответствует точке 1. Подведем к газу какое-то количество теплоты, и тогда газ под воздействием теплоты начнет расширяться, давить на поршень и передвигать его, совершая при этом работу. Рассмотрим элементарный процесс перемеш,ения поршня от положения х до х + dx. Из физики известно, что произведение силы на путь равно работе. Тогда элементарная работа расширения идеального газа dL = Fdx, где F — сила, с которой газ давит на поршень dx — путь, который проходит поршень. Сила F равна произведению давления газа р на площадь поршня 5, тогда элементарная работа dL = = pS dx. Так как dV = S dx, то  [c.128]

В процессе с переменной температурой теплоту, участвующую в процессе, также можно графически определить площадью фигуры под линией процесса I—2 (рис. 7,4, 6). Для этого разобьем процесс I—2 на бесконечно большое число бесконечно малых процессов, считая, что для каждого элементарного процесса температура постоянна, Тогда элементарное количество теплоты dq, равное Tds, численно равно площадке, имеющей высоту Т и основание ds. Очевидно, что вся теплота процесса численно равна пл. 1—2—d—с под кривой процесса.  [c.154]

Основным законом передачи теплоты (энергии) теплопроводностью является гипотеза Фурье (1768—1830), согласно которой элементарное количество теплоты dQi , проходящей через элементарную площадь изотермической поверхности dF за элементарный промежуток времени с/т, пропорционально температурному градиенту (dt/dn)  [c.163]

В настоящем учебном пособии авторы рассматривают теплопередачу как один из разделов динамики теплоты — термодинамики. Поэтому авторы по аналогии с термодинамикой в разделах по теплопередаче элементарное количество теплоты при написании рассматривают как бесконечно малую величину, не являющуюся полным дифференциалом пропорциональность излучательной способности тела четвертой степени абсолютной температуры показывают на основе применения соотношений термодинамики и т. д.  [c.5]

Как уже указывалось, теплота q не является функцией состояния и dq не будет полным диффер енциалом dq представляет собой только некоторую бесконечно малую величину. Для того чтобы проинтегрировать правую часть уравнения первого закона термодинамики dq = du + pdv, необходимо знать характер процесса, который совершается с газом, т. е. должна быть известна зависимость р от v. В математике доказывается, что дифференциальный двучлен всегда можно превратить в полный дифференциал путем, деления (или умножения) на интегрирующий делитель. Таким интегрирующим делителем для элементарного количества теплоты dq является абсолютная температура Т° К.  [c.81]


Связь между количеством теплоты dQ, проходящнм через элементарную площадку dF, расположенную на изотермической поверхности, за промежуток времени dr и температурным градиентом устанавливается гипотезой Фурье, согласно которой  [c.349]

ЛИМ некоторый элементарный слой толщиной dx, в котором при (=0 содержится количество теплоты dQ = срТнЕ dx. Будем рассматривать его как мгновенный плоский источник теплоты. Данный элементарный источник теплоты находится от рассматриваемой точки А на расстоянии х— х dx ). Следовательно, приращение температуры в точке А через время t от данного источника теплоты составит  [c.166]

Рассмотрим количество теплоты, затраченное на образование А—А-, В—В- и А—В-овязей. Обычно энергия Dab ге-терополярной А—В-связи в молекулах превышает среднее значение энергий Daa и Dbb гомеополярных А—А- и В—В-связей. Согласно Полингу, эта добавочная энергия имеет ионное происхождение и возникает в результате переноса электронов от менее электроотрицательного атома к более элект-роотрицательно1му. Таким образом, величины Ха и Хв, называемые элементарными электроотрицательностями, определяются следующим образом  [c.98]

Несмотря на то чю между понятиями работы и количества теплоты существует глубокое качественное различие, они являются родственными и то и другое выражают энергию, переда1Н1ую системе или с изменением, Hjm без изменения внешних параметров. Благодаря этому родству теплоту часто называют термической работой. Элементарное количество теплоты 8g, получаемое системой при равновесных процессах, может быть записано, подобно элементарной работе, в виде произведения обобщенной силы Т (температуры) на изменение обобщенной координаты S (энтропии)  [c.29]

Установление на основании принципа адиабатной недостижимости существования такой новой функции состояния а(й1,. .., t) приводит к тому, что пфаффова форма для элементарного количества теплоты 5Q, которая, согласно первому началу, не является полным дифференциалом, всегда имеет интегрирующий множитель, т. е. является голономной .  [c.56]

Содержанием второго начала термодинамики для равновесных процессов является, по Каратеодори, голономность выражения для элементарного количества теплоты 5Q. Планк в своей Термодинамике представляет этот замечательный факт как нечто тривиальное, не выражающее никаких особых свойств тел. На примере идеального газа он непосредственно вычисляет выражение  [c.162]

Второе начало термодинамики. 2.6. Превращение теплоты в работу в теплово.м двигателе. 2.7. Термодинамическая температура. 2.8. Энтропия. 2.9. Абсолютная температура как интегрирующий делитель элементарного количества теплоты. 2.10. Аналитическое выражение второго начала термодинамики. 2.11. Максимальная полезная внешняя работа. 2.12. Третье начало териодина.мики. 2.13. Статистическая природа второго начала термодинамики.  [c.6]

Это означает, что разность элементарных количеств теплоты и произведенной системой работы, т. е. величина dQ — dE, представляет собой полный. цнфференциал некоторой функции состояния системы, которую называют внутренней энергией и обозначают через У  [c.29]

Общее выражение для элементарного количества теплоты. Если известны аналитические выражения для внутренней энергии или энтальпии тела в виде функций параметров состояния, то при помощи первого начала термодинамики могут быть легко определены значения теплоемкостей тела при постоянном объеме Су = dQldT)Yll постоянном давлении Ср (й0 1йТ)р и зависимость их от параметров состояния. Чтобы показать это, рассмотрим равновесный процесс нагревания тела, состояние которого определяется двумя независимыми параметрами (так как число независимых параметров  [c.36]

Таким образом, в необратимом цикле интеграл ( dQIT (где Т — температура совершающего цикл тела в данной точке цикла, а lQ — полученное телом в этой точке элементарное количество теплоты интеграл берется по циклу) имеетотрицательныйзнак.  [c.57]

Ввиду важности полученного результата приведем еще одно доказательство его. Допустим, что теплота dQ к совершающему цикл телу подводится от источника теплоты с температурой посредством обратимого двигателя, работаю1дего по циклу Карно между температурами 7 и Т (рис. 2.18). Таких вспомогательных двигателей, в которых теплоотдатчиком является источник теплоты с температурой а теплоприемн/гком — совершающее цикл тело имеется бесконечное множество, причем каждый из них отбирает от источника теплоты количество теплоты iiQl, а отдает телу теплоту в количестве dQ, так что полезная внешняя работа элементарного двигателя  [c.57]

В уравнении (4.33) Ах/Х представляет собой термическое сопротивление теплопроводности элементарного слоя стенки, а Ат/(рсДл ) характеризует количество теплоты, аккумулированной элементарным слоем за промежуток времени Ат в процессе прогрева стенки поскольку единица измерения этого комплекса совпадает с единицей измерения термического сопротивления [К/(Вт/м2)], назовем его термическим сопротивлением теплоемкости элементарного слоя. Обозначив АхД= я,т и Ат/(рсАл ) = xт перепишем уравнение (4.33) в виде  [c.83]

Если л<е представить себе, что к телу подведено элементарное количество теплоты dq и температура тела повысилась на бесконечно малую температуру dT, то истинную теплоемкость определяют как производную от количества теплоты, подзеде1шой к телу, по температуре этого тела с = dqjdT. Таким образом, истинная теплоемкость тела — это его теплоемкость при дайной температуре.  [c.132]


Второе начало классической термодинамики формулируется как объединенный принцип существования и возрастания некоторой функции состояния тел и сложных систем — энтропии (термин энтропия предложен Р. Клаузиусом en— в, внутрь и trope или tropos — обращение, путь в целом — обращение внутрь, мера обесценения энергии). Дифференциал энтропии есть полный дифференциал dS, определяемый в обратимых процессах как отношение подведенного извне элементарного количества теплоты SQ gp к абсолютной температуре Т. (в обратимых процессах внутренний теплообмен отсутствует, 5Q = 0).  [c.47]


Смотреть страницы где упоминается термин Количество теплоты элементарное : [c.12]    [c.64]    [c.173]    [c.31]    [c.34]    [c.51]    [c.256]    [c.42]   
Математические основания статистической механики (0) -- [ c.91 ]



ПОИСК



Абсолютная температура как интегрирующий делитель элементарного количества теплоты

Количество теплоты



© 2025 Mash-xxl.info Реклама на сайте