Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеяние неупругое

Разность фаз парциальных воли 30 Рассеяние неупругое 12, 22, 31  [c.332]

Взаимодействия между частицами обусловливают необозримое количество самых разнообразных процессов н взаимопревращений. Они делятся на три большие группы упругое рассеяние, неупругие процессы и распады.  [c.513]

Значения эффективных зарядов часто используются для того, чтобы охарактеризовать полярность связи и степень ионности полупроводникового соединения. Величины q могут быть определены экспериментально из спектров ИК-поглощения и рамановского рассеяния, неупругого рассеяния нейтронов могут быть теоретически рассчитаны. Однако понятию эффективный заряд атомов в соединениях с преимущественно  [c.64]


Суммирование здесь проводится по всем составляющим атмосферы, а через (у), кц ч), клМ и км у) обозначены объемные коэффициенты ослабления за счет упругого (рэлеевского) рассеяния, неупругого (комбинационного) рассеяния, поглощения и рассеяния Ми соответственно. Если интересоваться только ослаблением, то вкладом неупругого рассеяния можно пренебречь. Когда длина волны лазерного излучения попадает на силь-  [c.156]

Диссипативные силы. При колебаниях упругих систем происходит рассеяние энергии в окружающую среду, а также в материале упругих элементов и в узлах сочленения деталей конструкции. Эти потери вызываются силами неупругого сопротивления—диссипативными силами, на преодоление которых непрерывно и необратимо расходуется энергия колебательной системы или возбудителей колебаний. Для описания диссипативных сил используются характеристики, представляющие зависимость диссипативных сил от скорости движения масс колебательной системы или от скорости деформации упругого элемента. Вид характеристики определяется природой сил сопротивления. Наиболее распространенные характеристики диссипативных сил представлены на рис. 10.8.  [c.279]

Кроме участия в процессе деления нейтроны претерпевают также упругое и неупругое рассеяние на ядрах, содержащихся в активной зоне, и радиационный захват. Нейтроны замедляются и диффундируют, часть из них утекает в отражатель, часть переходит обратно в активную зону. В результате конкуренции различных процессов устанавливается определенное пространственно-энергетическое распределение нейтронов в активной зоне, которое необходимо знать при проведении детального анализа зашиты.  [c.10]

Более просто можно получить решение уравнения (9.9) в многогрупповом представлении (см. гл. IV), удобном для проведения практических расчетов. При этом удается учесть и неупругое рассеяние. Интегрируя уравнение (9.9) в пределах н-й энергетической группы АЕ , получаем  [c.18]

По мере увеличения энергии нейтрона может возбуждаться или принимать участие в испускании каскадных у-квантов все большее число ядерных уровней. И для энергий нейтронов выше 4 Мэе спектр у-квантов при неупругом рассеянии нейтронов становится почти во всех случаях сплошным (кроме кислорода н углерода).  [c.30]

Имеется большое количество данных по спектрам и выходам у-квантов при неупругом рассеянии моноэнергетических нейтронов различных энергий [2, 22], однако эти данные неполны, особенно для области энергий нейтронов 5—12 Мэе. Для оценочных расчетов могут быть использованы результаты измерений спектров у-квантов, образующихся при неупругом рассеянии нейтронов спектра деления [23] и реакторного спектра [24].  [c.30]


Сечения образования у-квантов при неупругом рассеянии нейтронов  [c.31]

Гамма-кванты, образующиеся при неупругом рассеянии нейтронов, испускаются в основном изотропно. Однако при возбуждении низколежащих уровней, особенно для легких ядер, часто наблюдается анизотропия выхода у вантов. Отношение выхода у-квантов под углом 0° к направлению движения . падающего нейтрона к выходу под углом 90° может доходить до 2 [2, 5].  [c.32]

При расчете распределений вторичного у-излучения в защите, т. е. захватного у-излучения, а также у-излучения, сопровождающего неупругое рассеяние быстрых нейтронов (см. 9.2), следует учитывать, что в большинстве случаев в его интенсивность основной вклад вносит захват тепловых нейтронов.  [c.61]

В первом приближении число таких дефектов, вызванных смещениями атомов в кристаллической решетке, пропорционально анергии, переданной веществу нейтронами при их замедлении. Действительно, при малых энергиях атомов отдачи их столкновения с другими атомами являются в основном упругими. Однако с ростом их энергии увеличивается вероятность неупругих столкновений, при которых энергия может передаваться в форме электронного возбуждения или ионизации. Таким образом, часть энергии расходуется не на повреждение кристаллической решетки. Кроме того, отклонение энергетической зависимости радиационной эффективности нейтронов от линейного закона обусловлено колебаниями энергетической зависимости сечений рассеяния, наличием анизотропии рассеяния и неупругого рассеяния нейтронов. Результирующая относительная энергетическая зависимость радиационной эффективности нейтронов 2д( ) в образовании элементарных дефектов для энергий Е> >0,1 Мэе приведена на рис. 9.19, кривая 1 (при нормировке  [c.70]

Наряду с заряженными частицами возникновению у-квантов внутри защиты способствуют также нейтроны. Это происходит при неупругом рассеянии нейтронов в результате (п, у)-реакций и, как правило, при (п, х)-реакциях с испусканием заряженных частиц X. Скорость протекания этих реакций в единице объема защиты определяется произведением ФиЕ, в котором Ф — плотность потока нейтронов, а 2 — макроскопическое се чение соответствующей реакции. Произведение Фц2 называется также плотностью столкновений. Для определения плотности столкновений необходимо найти пространственное распределение нейтронов в защите. При этом целесообразно использовать многогрупповой метод расчета, основы которого изложены в гл. IV. Если задана плотность тока нейтронов различных энергий на поверхности активной зоны и защита является однородной средой, то можно успешно использовать теорию возраста.  [c.112]

Однако рассеяние заряженных частиц на электронах атомной оболочки часто сопровождается ионизацией атомов, приводит к потерям энергии и торможению частицы. При столкновении нуклонов или я-мезонов с нуклонами, как увидим ниже (гл. IX), возможно рождение новых частиц, изменение структуры и состояния сталкивающихся частиц. Такие процессы называются неупругим рассеянием или неупругими столкновениями.  [c.27]

Часто упругое (Л + а) и неупругое А - а) ядерные рассеяния рассматриваются как частный случай ядерного взаимодействия, который отличается от других тем, что продукты реакции совпадают с частицами, вступающими в реакцию.  [c.262]

Реакции п, п ). При больших энергиях (с 1 Мэе) падающих нейтронов становится возможным их неупругое рассеяние п, п ). В этом случае нейтрон может потерять большую часть своей первоначальной энергии. Возбужденное ядро возвращается в основное энергетическое состояние, испуская 7-кванты. Для того  [c.282]

Расширен раздел книги, посвященный замедлению нейтронов (описаны деформация спектра нейтронов с ростом числа соударений, роль неупругого рассеяния и химической связи дано понятие о возрастном приближении теории замедления).  [c.10]

В гл. IV в основном рассматриваются упругие и неупругие процессы, происходящие под действием электромагнитного взаимодействия. Частным случаем упругого электромагнитного взаимодействия является кулоновское рассеяние а-частиц на атомных ядрах, которое описывается формулой Резерфорда / Zz6 2  [c.254]

Как упоминалось выше, упругое магнитное рассеяние нейтронов позволяет установить магнитную структуру, подобно тому как упругое немагнитное рассеяние нейтронов позволяет определить пространственное расположение ионов. Аналогия распространяется и на случай неупругого рассеяния. Неупругое магнитное рассеяние нейтронов выявляет спектр спиновых волн, подобно тому как немагнитное неупругое рассеяние нейтронов позволяет найти фононный спектр. Таким образом, существуют односпинволновые пики в магнитной части  [c.322]


К источникам вторичных у-кваитов в материалах активной зоны и защиты относятся 1) захватное у-излучение, образующееся в результате реакции (п, у) 2) у-излучение, возникающее при неупругом рассеянии быстрых нейтронов 3) у-излучение, сопровождающее нейтронные реакции с образованием заряженных частиц 4) активационное у-излучение 5) тормозное у-из-лучение 6) у-кванты, возникающие при аннигиляции позитронов.  [c.27]

Относительная роль этих источников в разное время не одинакова. При работе реактора в поле излучения в защите основную роль наряду с первичным у-иэлучение.м играют захватные у-кванты. Кроме того, некоторое значение имеет у-излучение, сопровождающее неупругое рассеяние нейтронов. Остальными источниками в первом приближении можно пренебречь. После остановки реактора наряду с запаздывающим у-излуче-нием продуктов деления важную роль начинает играть активационное у-излучение.  [c.27]

Гамма-излучение при неупругом рассеянии нейтронов. Составное ядро в возбужденном состоянии, образующееся при поглощении нейтрона, может избавиться от энергии возбул<-дения не только высвечиванием у-кванта (радиационный захват), но и испусканием нейтрона с последующим выходом одного или нескольких у-квантов. Этот процессе пороговый, поскольку кинетическая энергия нейтрона (в системе центра инерции) должна быть достаточной для возбуж.дения ядра по меньшей мере до первого уровня выше основного состояния. Отсюда также следует, что максимальная энергия у-кванта меньше или равна энергии нейтрона, претерпевшего неупругое рассеяние. Как только энергия нейтрона становится больше энергии нескольких уровней возбуждения, переход в основное состояние часто происходит через каскадный процесс, при этом энергия одного у-кванта не равна энергии, потерянной нейтроном.  [c.30]

В табл. 9.6 приведены сечения образования у-квантов различных энергий Огп.у при неупругом рассеянии нейтронов спектра деления с энергией выше Дцор, 1 Де пop — пороговая энергия для выхода у-квантов данной энергии Еу [23]. В этой  [c.30]

Гамма-излучение продуктов ядерных реакций. При поглощении нейтрона ядрами некоторых легких элементов возможно испускание не только у ванта (захватное у злучение) или нейтрона (неупругое рассеяние), но и заряженных частиц [реакции (п, р) и п, а)]. Обычо сечения этих реакций малы, и для защиты практически важны лишь реакции В ( , а) ГГ и Ы (п, а)№.. Для тепловых нейтронов в 94% случаев первая реакция идет С образованием возбужденного состояния Ы с энергией 0,478 Мэе. Это возбуждение снимается высвечиванием укванта такой же энергии.  [c.32]

Суммарная интенсивность источников уквантов qy r) в активной зоне складывается из интенсивности источников первичного и вторичного у-излучения. При этом некоторая часть q (г), обусловливаемая мгновенным уизлучением деления и у-излу-чением, возникающим при захвате и неупругом рассеянии нейтронов, пропорциональна мощности реактора в рассматриваемый момент времени. Остальная часть ее, обусловливаемая запаздывающим у-излучением продуктов деления и активационным у-излучением, зависит от мощности и режима работы реактора в предыдущий период.  [c.33]

В источниках больших размеров необходимо учитывать само-поглощение частиц и изменение их энергии в результате упругих и неупругих рассеяний. В связи с этим определение мощности излучения больших источников становится относительно сложным. Наиболее трудоемки расчеты утечек нейтронов и у-квантов из ядерного реактора. К моменту начала расчета тепловыделения в защите должен быть выполнен физический расчет реактора, Результаты его содержат координатные распределения плотностей потоков нейтронов в активной зоне и отражателе реактора. По ним можно найти плотность утечки нейтронов из активной зоны реактора и определить распределение источников у-кваитов в активной зоне. Плотность утечки нейтронов определяется как произведение коэффициента диффузии на производную от плотности потока на границе активной зоны. Распределение источников у-квантов в активной зоне реактора дает  [c.108]

Для гомогенной смеси веществ макроскопическое сечение определяют на основе закона аддитивности. При этом из-за больщой относительной величины потери энергии при упругом взаимодействии нейтронов с легкими ядрами в качестве сечения замедления можно принимать полное сечение рассеяния на водороде и половину полного сечения для других легких ядер. На средних и тяжелых ядрах замедление нейтронов происходит преимущественно вследствие неупругих взаимодействий, число которых достигает 50% общего числа взаимодействий. Суммарный эффект неупругих и упругих взаимодейст-вг й позволяет принимать в качестве эффективного сечения замедления на средних и тяжелых ядрах 3/4 полного сечения рассеяния нейтронов.  [c.300]

Радиальное направление. На рис. 1.1 оно обозначено как направлени I. После стального корпуса реактора накапливается много нейтронов промежуточных энергий (результат неупругого рассеяния нейтронов в железе). Они эффективно замедляются и поглощаются в воде. Причем энергия зах-  [c.310]

Реакция А (а, а) А, сопровождающаяся лишь изменением внутреннего состояния без изменения состава ядра и соударяющей частицы, называется неупругим рассеянием.  [c.262]

Вид реакции существенно зависит от энергии налетающего нейтрона. При малых энергиях налетающих нейтронов (под действием тепловых нейтронов с энергиями в доли электрон-вольта) происходит, главным образом, реакция п, у) — радиационный захват. Для многих ядер при поглощении тепловых нейтронов сечение ст и выход радиационного захвата близок к единице. По мере увеличения энергии налетающего нейтрона начинает увеличиваться вначале вероятность неупругого рассеяния. При энергиях в несколько мегаэлектрон-вольт происходят реакции (п, р), п, а), (п, 2п).  [c.281]


Выше уже отмечалось, что составное ядро (ядро, захватившее нейтрон) может не только делиться, но может и излучать у-фотон или нейтрон. В таблице 14 приведены эффективные сечения (а — деления, — радиационного захвата, — неупругого рассеяния), характеризующ,ие вероятность этих процессов для ядер, облученных тепловыми нейтронами.  [c.305]

Столкновения фотонов с молекулами могут быть как упругими, так и неупругими. В первом случае энергия молекулы и частота Тд фотона не меняются, что соответствует рэлеевскому рассеянию. При неупругом столкновении энергия фотона упеличивается или уменьшается на величину колебательного кванта /IV/. Если свет вступает во взаимодействие с молекулой, не находящейся в состоянии колебания, то он отдает молекуле соответствующую часть энергии и превращается в излучение меньшей частоты ( красный спутник ) в соответствии с уравнением  [c.603]

Отметим, что неупругое рассеяние фотонов было предсказано теоретически (А. Смекаль, 1923 г.) для их взаимодействия именно с атомами. Однако экспериментально оно было обнаружено намного позднее комбинационного рассеяния молекулами. Комбинационное рассеяние ионами было обнаружено в 1963 г., а комбинационное рассеяние атомами—в 1967 г.  [c.607]

Все виды взаимодействий (сильные, электромагнитные и слабые) по характеру их цротекания можно разделить на упругие и неупругие. Упругое взаимодействие, т. е. упругое рассеяние одной частицы на другой, характеризуется сохранением суммарной кинетической энергии обеих частиц и может быть описано (для всех видов взаимодействий) при помош,и простой геометрической схемы, называемой импульсной диаграммой (для высоких энергий должен быть рассмотрен релятивистский вариант диаграммы). Неупругие процессы характеризуются переходом (полным или частичным) кинетической энергии движущейся частицы в другие формы, например в энергию возбуждения атома, в энергию излучения, в энергию покоя образующихся частиц.  [c.254]


Смотреть страницы где упоминается термин Рассеяние неупругое : [c.208]    [c.208]    [c.316]    [c.549]    [c.13]    [c.208]    [c.17]    [c.32]    [c.69]    [c.274]    [c.281]    [c.283]    [c.284]    [c.319]    [c.239]   
Теплоэнергетика и теплотехника Общие вопросы Книга1 (2000) -- [ c.257 ]

Некоторые вопросы теории ядра Изд.2 (1950) -- [ c.149 , c.264 , c.400 ]

Ядра, частицы, ядерные реакторы (1989) -- [ c.12 , c.22 , c.31 ]

Модели беспорядка Теоретическая физика однородно-неупорядоченных систем (1982) -- [ c.156 ]

Лазерное дистанционное зондирование (1987) -- [ c.117 ]



ПОИСК



Неупругость



© 2025 Mash-xxl.info Реклама на сайте