Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Корпускулярная теория света

Этот закон совпадает с законом отражения для волн любой природы и может быть получен как следствие принципа Гюйгенса. Может показаться, что закон отражения может быть успешно объяснен и корпускулярной теорией света. Действительно, при ударе о пол упругого мяча угол отражения также равен углу падения, поэтому свет можно представить себе как поток частиц, испытывающих упругие столкновения с поверхностью раздела двух сред. Но эта гипотеза не может объяснить, почему свет  [c.264]


Заканчивая это предельно краткое изучение свойств фотона, целесообразно сформулировать следующие общие соображения. Введение понятия фотона привело фактически к созданию новой корпускулярной теории света, хорошо объясняющей некоторые оптические явления, истолкование которых в рамках волновой теории было затруднительно, а иногда невозможно. В то же время при правильном описании явлений эта теория не приводит к противоречию с исходными положениями волновой оптики. В частности, можно описать явления на границе двух сред в терминах как волновой, так и корпускулярной оптики. Конечно, было бы грубой ошибкой отождествлять скорость электромагнитных волн и скорость корпускул и пытаться поставить какой-либо решающий опыт, позволяющий выбрать одну из двух дополняющих одна другую теорий для описания всех сложных оптических явлений. Следует учитывать, что волновая и корпускулярная картины — это классические крайности (пределы) квантово-ме-ханической сущности явления, полностью соответствующей дуализму материи.  [c.452]

При этом, согласно корпускулярной теории света, скорость света V в воздухе должна быть  [c.114]

В начале прошлого столетия наиболее актуальным вопросом теоретической физики была дилемма правильности волновой или корпускулярной теории света. Основы волновой теории были заложены Гюйгенсом. В рассматриваемый период она получила подтверждение благодаря  [c.300]

Выбор между этими двумя теориями.был сделан на основании знаменитого эксперимента Фуко (1850 г.), показавшего, что свет распространяется в воде медленнее, чем в воздухе. Этот результат противоречил корпускулярной теории света.  [c.313]

Например, по корпускулярной теории света скорость корпускул в какой-либо среде зависит только от их положения и пропорциональна соответствующему значению показателя преломления Следовательно,  [c.271]

Корпускулярная теория света встречается в данном случае с большими трудностями. Уже со времен Ньютона известно, что проходящие вблизи края экрана световые лучи не остаются прямолинейными и что некоторые из них проникают в область геометрической тени. Ньютон приписывал это отклонение влиянию некоторых сил, которые якобы действуют со стороны края экрана на световые корпускулы. Мне кажется, что это явление заслуживает, очевидно, более общего объяснения. Так как, по-видимому, между движением тел и распространением волн существует глубокая связь и так как лучи фазовых волн могут теперь рассматриваться как траектории (возможные траектории) квантов энергии, мы склонны отказаться от принципа инерции и утверждаем Движущееся тело всегда должно следовать за лучом своей фазовой волны. При распространении волны форма поверхностей равной фазы будет непрерывно изменяться, и тело всегда будет двигаться, согласно нашему утверждению, по общему перпендикуляру двух бесконечно близких поверхностей.  [c.636]


Ньютоном фактически впервые была сформулирована первая (прямая) теорема подобия, которая является основой теории подобия. Таким образом, с полным основанием можно считать, что учение о подобии начинается с трудов Ньютона. Ньютоном исследованы условия подобия механических систем и сформулированы критерии подобия этих систем. Этими работами положено начало теоретических работ по обоснованию основных принципов моделирования. Выше было обращено внимание на то, что в понятие моделирования может быть вложен различный смысл. Моделирование может рассматриваться как создание реальных (материальных) моделей, отражающих реальные явления с целью упрощения исследований, и как создание гипотетической модели некоторого явления с целью наглядного представления новых идей. Ньютоном сделан большой вклад в развитие теории моделирования как в одном, так и в другом ее направлении. Так, им построена наглядная механическая модель для объяснения световых явлений (корпускулярная теория света), математическая модель для объяснения явления тяготения и т. д.  [c.8]

Т. о., на новом качеств, уровне была возрождена корпускулярная теория света. Свет ведёт себя подобно потоку частиц (корпускул) однако одновременно ему присущи и волновые свойства, к-рые проявляются, в частности, в явлениях дифракции и интерференции. Следовательно, несовместимые с точки зрения классич. Ф. волновые и корпускулярные свойства в равной мерс присущи свету.  [c.313]

Принципиально возможность воспроизведения поля света, рассеянного объектом, следует из работы голландского физика Христиана Гюйгенса Трактат о свете , изданной в 1690 году. В отличие от Ньютона, предполагавшего, что свет переносят летящие сквозь пустоту частицы, Гюйгенс утверждал, что свет представляет собою возмущение, передаваемое через некую промежуточную среду эфир . Хотя утверждение Гюйгенса известно под названием Волновая теория света , сам Гюйгенс понятие волна не использовал. Сущность его воззрений и их отличие от корпускулярной теории света Ньютона можно проиллюстрировать следующим примером (рис. 5).  [c.16]

В данном пункте показано, что аналогию с волновой теорией света Гюйгенса имеет динамика расширенной системы (расширение системы производится на основе метода Лиувилля за счёт введения дополнительных переменных, сопряжённых с обобщёнными координатами и обобщёнными импульсами [1]). Аналогия механики с корпускулярной теорией света Ферма распространяется на движения с ударами, имеющими потенциал ударных импульсов и не меняющими значения обобщённого интеграла энергии.  [c.138]

В предыдущем параграфе было показано, что распространение световых сигналов эквивалентно движению световых частиц. Такое описание, которое похоже на корпускулярную теорию света Ньютона, конечно, не полно, так как оно не учитывает волновые свойства света. Чтобы объяснить, например, явление интерференции, необходимо ввести понятие волны, характеризующейся определенной частотой и длиной волны. Вспомним, что в СТО плоская монохроматическая волна в любой инерциальной системе описывается следующим образом [см. (2.67) и (4.43)1  [c.283]

Согласно корпускулярной теории, свет состоит из мельчайших частиц, или корпускул, испускаемых светящимися телами. С этой точки зрения прямолинейное распространение света сводится к закону инерции. Для истолкования закона независимости световых пучков надо было ввести предположение, что средние расстояния между корпускулами в световых пучках настолько велики, что корпускулы практически не взаимодействуют между собой случаи сближения, в которых проявляется такое взаимодействие, крайне редки и при существующей точности эксперимента ускользают от наблюдения.  [c.20]

Смертельный удар корпускулярной теории в ее ньютоновской форме был нанесен в 1850 г. К этому времени Физо (1819—1896) и Фуко (1819—1868) впервые измерили скорость света лабораторными методами. Как мы указывали (см. пункты 2 и 5), по корпускулярной теории скорость света в воде больше, а по волновой теории меньше, чем в вакууме. В 1850 г. Фуко и независимо от него Физо и Бреге сравнили обе скорости. Опыт оказался в согласии с волновой и противоречии с корпускулярной теориями света. Физики XIX века восприняли это как решающий опыт, окончательно доказавший неправильность корпускулярной теории света.  [c.28]


Этой формулой в ньютоновской корпускулярной теории и определяется угол аберрации. При малых углах а она совпадает с релятивистской формулой (107.13), если пренебречь квадратичными членами по р. Если бы к движению световой корпускулы применить релятивистский закон сложения скоростей (с учетом того, что скорость корпускулы по абсолютной величине равна с), то получились бы в точности прежние релятивистские формулы (107.10). Наблюдение аберрации света не позволяет, следовательно, сделать выбор Между волновой и корпускулярной теориями света.  [c.657]

Введение представления о фотонах в какой-то степени возрождало корпускулярную теорию света. Оно получило дальнейшие подкрепления при рассмотрении еще ряда оптических явлений особенно наглядно это проявилось в 1923 году.  [c.316]

Другой проблемой XIX в. была природа светового излучения. Существовали две основные теории, подтвержденные надежными экспериментальными наблюдениями. Такое наблюдаемое свойство как дифракция, свидетельствовало о том, что свет подчиняется закону упругих волн и его почти полностью можно объяснить электромагнитной теорией Максвелла. Однако фотоэлектрический эффект чужд волновой теории света и мог быть объяснен только при условии допущения корпускулярной природы света.  [c.71]

Таким образом, широко распространенное мнение, что Гюйгенс является создателем разработанной волновой теории света, которая может быть противопоставлена корпускулярной теории Ньютона, представляется неточным. Во времена Гюйгенса — Ньютона волновая теория была намечена лишь очень схематично. При этом наиболее важный элемент ее представлений — периодичность световых явлений — гораздо отчетливее сознавал именно Ньютон,  [c.18]

Наряду с теми трудностями, к которым приводила электронная теория Лорентца, опиравшаяся на представление о неподвижном эфире, выяснились и другие затруднения этой теории. Она оставляла неразъясненными многие особенности явлений, касающихся взаимодействия света и вещества. В частности, не получил удовлетворительного разрешения вопрос о распределении энергии по длинам волн в излучении накаленного черного тела. Накопившиеся затруднения вынудили Планка сформулировать теорию квантов (1900 г.), которая переносит идею прерывности (дискретности), заимствованную из учения о молекулярном строении вещества, на электромагнитные процессы, в том числе и на процесс испускания света. Теория квантов устранила затруднения в вопросах излучения света нагретыми телами она по-новому поставила всю проблему взаимодействия света и вещества, понимание которой невозможно без квантовой интерпретации. Целый ряд оптических явлений, в частности фотоэлектрический эффект и вопросы рассеяния света, выдвинул на первый план корпускулярные особенности света. Процесс развития теории квантов, ставшей основой современного учения о строении атомов и молекул, продолжается и ныне.  [c.24]

Возражения Франклина, имевшие принципиальное значение, поскольку волновая теория света развивалась как теория упругая, потеряли свою силу в качестве аргумента против корпускулярных представлений, когда Максвелл вывел необходимость светового давления с точки зрения электромагнитной волновой теории и даже вычислил его величину.  [c.660]

Преломление света м корпускулярной теории. Рассмотрим свет как поток частиц, падающих на поверхность раздела двух сред (рис. 20). Поскольку значение горизонтальной составляющей скорости при переходе из одной среды в другую не меняется, запишем  [c.113]

Теория Планка, хотя и противоречила духу классической физики, подтверждалась опытными фактами и смогла решить задачу теплового излучения абсолютно черных тел. Следует отметить, что квантовая теория Планка совершенно не нуждается в понятии эфирной среды . Таким образом, к началу XX в. наряду с электромагнитной теорией возродилась корпускулярная теория света, но, безусловно, отличЕ1ая от корпускулярной теории Ньютона.  [c.8]

И. Ньютон в 1672 г. высказал предположение о корпускулярной природе света. Против корпускулярной теории света выступали соаременники Ньютона — Р. Гук и X. Гюйгенс, разработавшие волновую теорию света.  [c.262]

Возрождение на новой основе корпускулярной теории света и то, что она не противостоит волновой теории, а дополняет ее, представляется совершенно естественным. В XX в. спор, который вели в свое время великие физики Ньютон и Гюйгенс, выгляде. бы совершенно нелепым. Хорошо известно, что наличие этих двух внешне противоречивь х теорий отражает сложную ду1иьную природу света, характерную для всей окружающей нас материи.  [c.461]

В течение всего XVIII века корпускулярная теория света (теория истечения) занимала господствующее положение в науке, однако острая борьба между этой и волновой теориями света не прекращалась. Убежденными противниками теории истечения были Эйлер ( Новая теория света и цветов , 1746 г.) и Ломоносов ( Слово о происхождении света, новую теорию о цветах представляющее , 1756 г.) они оба отстаивали и развивали представление о свете как о волнообразных колебаниях эфира.  [c.20]

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]


Теория и эксперимент в этом вопросе пережили длинную историю. В экспериментальном отнощении имелись и совсем наивные попытки, и попытки серьезного характера, вроде тех, которые привели Крукса к открытию особого вида явлений (радиометрических), связанных с кинетикой разреженных газов. Франклин рассматривал неудачи всех известных к его времени попыток обнаружить давление света как один из аргументов против корпускулярной теории света. Впоследствии Юнг также прибегал к этому аргументу, хотя ни Франклин, ни Юнг не имели возможности указать минимальную величину предполагаемого давления, поскольку относительно массы световых частиц нельзя было высказать никакого суждения и, следовательно, нельзя было судить, достаточна ли чувствительность крутильных весов, применявшихся для этих опытов.  [c.660]

Интересно отметить, что точно такой же эффект наблюдали примерно за 100 лет до опытов Рамзауэра-Таунсенда с рассеянием корпускул, которые, по теории Ньютона, образовывали световые пучки. Но в то время это привело к почти мгновенному отказу от корпускулярной теории света Ньютона и торжеству волновой теории Френеля, которая была прямой наследницей теории Гюйгенса, вытесненной примерно за полтора века до этого из науки корпускулярной теорией Ньютона. Корпускулярная теория Ньютона была господствующей примерно в течение полутора веков, но после экспериментального обнаружения эффекта, аналогичного эффекту Рамзауэра-Таунсенда, была в течение нескольких месяцев всеми отвергнута. Напомним эту историю.  [c.55]

Начиная с XVII в., наука о свете — оптика — привлекала внимание исследователей. Наиболее обычные явления (прямолинейное распространение, отражение, преломление), образующие нашу современную геометрическую оптику, были, естественно, изучены первыми. Многие ученые, в частности Декарт и Гюйгенс, работали над установлением законов этих явлений, а Ферма обобщил. их, выведя синтетический принцип, носящий его имя, который, будучи выражен в терминах современной математики, напоминает по форме принцип наименьшего действия. Гюйгенс склонялся к волновой теории света, но Ньютон, чувствуя в основных законах геометрической оптики глубокую аналогию с динамикой материальной точки, творцом которой он являлся, развил корпускулярную теорию света, так назы-  [c.641]

Начиная с Ньютона было предложено несколько теорий для объяснения природы света. Выдвинутую им корпускулярную теорию света сменила волновая теория, предложенная Гюйгенсом. По этой теории пространство считалось заполненным гипотетической средой — эфиром, а распространение света рассматривалось как волновой процесс, вызванный распространением возмущения (светового импульса) в этой среде в виде колебаний частип, среды перпендикулярно направлению распространения волны.  [c.15]

Как известно, философы древности предполагали, чгз свет представляет собой лучи, исходящие из глаз эти лучи определенным образом ощупывают объекты и дают наблюдателю представление об их существовании. Эта концепция господствовала в средние века, но В конце концов она была заменена гипотезой о переносе энергии от источника света к объекту, а затем от объекта к глазу, согласно закону, который позже был установлен Снеллем, Декартом и Ферма. Природа этого переноса была объяснена двумя теориями, которые почти одновременно были развиты Ньютоном и Гюйгенсом. А именно приблизительное 1700 г. Ньютон опубликовал свою корпускулярную теорию света, согласно которой источник света испускает мельчайшие частицы, перемещающиеся по прямым линиям с чрезвычайно большими скоростями следовательно, вся геометрическая оптика могла быть объяснена простейшим образом, если ограничиться изучением хода световых лучей. По мере развития науки, когда стали проникать во внутреннюю структуру явлений, оказалось необходимым ввести понятие о волновой природе света. Первая гипотеза в этом духе была высказана в Трактате о свете Гюйгенса, появившемся в 1690 г. Гюйгенс рассматривал световые явления как результат распространения волн, подобных тем, которые наблюдаются при распространении звуковых волн в жидкостях и газах. Только спустя 50 лет у Эйлера возникла идея о периодичности световых явлений известно, насколько успешно эта новая гипотеза помогла Френелю объяснить явление дифракции.  [c.9]

Проигло довольно много времени, прежде чем физики полностью осознали парадоксальный, почти иррациональный смысл уравнения Планка г=к. Заслуга в. этом принадлежит в основном Эйшлтейну и Бору. В 1905 г. Эйнштейн (1879—1955 гг.) на основании теории Планка возродил в новой форме корпускулярную теорию света [531, предположив, что планковские кванты энергии существуют в виде реальных частиц света, названных им световыми квантами, или фотонами. Таким образом, ему удалось объяснить некоторые явления, открытые ранее в связи с. превращением энергии света в энергию  [c.20]

Физики XVIII и начала XIX веков, забыв о колебаниях и сомнениях Ньютона, приняли корпускулярную теорию света. Сторонники волновой теории насчитывались единицами. Правда, среди них были Эйлер (1707—1783), Ломоносов (1711—1765) и Франклин (1706—1790), выдвигавшие возражения против корпускулярной и приводившие аргументы в пользу волновой теории света. Эйлер, например, утверждал, что если бы корпускулярная теория  [c.26]

Но как согласовать корпускулярные представления о свете с результатами опытов Фуко и Физо (см. пункт 8) Эти опыты вне всякого сомнения опровергакуг корпускулярную теорию света в ее ньютоновской форме. Приходится поэтому признать, что к световым корпускулам классические представления о движении неприменимы. Интерференция и дифракция света доказывают, что в этих явлениях свет ведет себя как волны. Фотоэффект, комптоновское рассеяние рентгеновских лучей и пр. с неменьшей убедительностью доказывают, что здесь свет действует как частицы. Вообще, явления распространения света правильно описываются в рамках волновых теорий, а для описания взаимодействия света и вещества необхо-  [c.30]

Брадлей видел в явлении аберрации доказательство конечности скорости распространения света. Измерив угол аберрации а, он вычислил эту скорость по формуле а = У1с. По времени это было второе (после Рёмера) измерение скорости света. Сам Брадлей истолковал открытое им явление с точки зрения ньютоновской корпускулярной теории света. В нерелятивистской кинематике скорости световой корпускулы и в системах отсчета 5 и 5 связаны соотношением г> = г + V. Ограничимся случаем, когда в системе 5 световая корпускула движется по оси со скоростью Оу = — с. в системе 5 появляется составляющая скорости корпускулы в перпендикулярном направлении Ох = = — У. Из-за этого траектория корпускулы в системе 5 будет наклонена к оси под углом а, определяемым формулой  [c.657]

XVIII в. отмечен почти безраздельным господством в Западной Европе корпускулярной теории света. Замечательным фактом в истории физики является то, что М. В. Ломоносов (1711—1765) горячо отстаивал волновые представления.о свете.  [c.163]

Чтобы понять, почему эти свойства света парадоксальны, заметим, что первое из утверждений представлялось бы совершенно естественным в рг.мках корпускулярной теории света если испускание света есть просто испускание некоторых — очень легких и быстрых — частиц, то это есть типичный механический процесс, и пеудивительяо, если для него сохраняется справедливый для всех механических процессов принцип относительности. Однако в такой теории следовало бы ожидать, что источник, движущийся со скоростью V, испускал бы — в соответствии с механическим законом сложения скоростей (1.4а)—в направлении своего движения свет со скоростью с а в противоположном— со скоростью с — V, если с есть скорость распространения света от неподвижного источника.  [c.141]

Напомним, что по классической теории энергия (интенсивность) электромагнитных волн определяется квадратом а п1литуды и никак не связана с частотой. Гипотеза Планка о пропорциональпости энергии и частоты фактически заставила вновь (после Ньютона) обратиться к корпускулярной теории света.  [c.249]


Спустя несколько лет после создания Ньютоном корпускулярной теории известн1,1й ученый X. Гюйгенс, опираясь на аналогию оптических и акустических явлений, выдвинул волновую теорию света.  [c.4]

Корпускулярно-волновой дуализм, Законы фотоэффекта, явления взаимодействия света с веществом электромагнитная теория света объяснить не может. В XX в. в физике утвердились представления о корпускулярноволновом дуализме свойств света.  [c.264]


Смотреть страницы где упоминается термин Корпускулярная теория света : [c.6]    [c.462]    [c.274]    [c.290]    [c.21]    [c.27]    [c.60]    [c.79]    [c.568]    [c.4]    [c.6]   
Колебания и волны Введение в акустику, радиофизику и оптику Изд.2 (1959) -- [ c.163 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте