Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектры атомные

Другим основным свойством квантового мира является дискретная уровневая структура энергетического спектра атомных ядер и элементарных частиц (равно как и других микрообъектов — атомов, молекул). Макроскопические тела такой уровневой структуры не имеют. Пружину можно сжимать плавно, и ее внутренняя энергия будет плавно расти. Даже малая сила вызовет небольшое сжатие пружины и увеличение ее внутренней энергии. Но если бы мы уменьшили эту пружину в сотни миллионов раз, то все стало бы иначе из-за квантовых закономерностей. При слабых толчках пру-  [c.19]


Наблюденные длины волн этих линий приведены в табл. 3. Таким образом, весь спектр атомного водорода целиком охватывается обобщенной формулой  [c.24]

Рис. 6.3. Фотоэлектронный спектр атомного водорода при воздействии фотона с энергией 21,21 эв. Рис. 6.3. <a href="/info/617139">Фотоэлектронный спектр</a> <a href="/info/346919">атомного водорода</a> при воздействии фотона с энергией 21,21 эв.
Экспериментальные данные об энергии могут быть получены по испусканию или поглощению веществом излучения. Такие сведения о тепловом излучении и атомных спектрах накапливались в течение многих лет. Ранние попытки объяснить наблюдаемое тепловое излучение, применяя классические законы Ньютона к атомным системам, были только отчасти удовлетворительны. Например, в излучении абсолютно черного тела количество излученной энергии для коротких волн мало оно возрастает с увели-  [c.70]

В 1913 г. Бор применил квантовую гипотезу к атомным системам и вывел теоретически наблюдаемый спектр атома водорода. Ранее спектр был описан уравнением, содержащим эмпирическую постоянную Ридберга, которую по теории Бора можно вычислить с помощью известных физических постоянных, включая постоянную Планка h. Успех квантовой гипотезы в объяснении излучения черного тела и спектра атомарного водорода обеспечил твердую основу для развития новой механики, которая может дать все результаты классической механики и правильные ответы на вопросы, которые классическая механика не могла разрешить.  [c.71]

По сравнению с оптическим спектром рентгеновские спектры элементов обладают довольно простой структурой. Рентгеновские спектры характеризуются однообразием и наличием малого числа линий. При переходе от одного (легкого) элемента к другому (тяжелому) элементу единственное изменение в рентгеновском спектре заключается в смеш,ении линий в сторону коротких волн. Об этом свидетельствует схема рентгеновских спектров различных элементов (от кислорода до урана), представленная на pnj . 6.38, где по оси ординат отложены атомные номера элементов, а по оси — абсцисс — длина волны.  [c.161]

Направляя на вещество излучение, имеющее сплошной спектр, и анализируя спектральный состав прошедшего через вещество излучения, т. е. изучая спектр поглощения (спектр абсорбции), проводят структурный анализ вещества. Такой метод исследования носит название абсорбционной атомной и молекулярной спектроскопии.  [c.282]


В рассматриваемом диапазоне энергий можно принять, что форма спектра тормозного излучения не зависит от атомного номера поглотителя и энергии электрона.  [c.231]

Таблица Менделеева содержит смесь горизонтальных рядов, т.е. семь периодов и восемь вертикальных рядов, названных группами. К периодически изменяющимся свойствам, которые определяются внешними электронными оболочками, относятся наряду с химическими свойствами также атомный объем, напряжение ионизации, температура плавления, коэффициент расширения, строение оптических спектров и др. Элементы, расположенные в одном вертикальном столбце, обладают близкими свойствами при перемещении в направлении горизонтального ряда свойства элементов постоянно изменяются, но характер их изменения повторяется в следующем периоде. С каждым периодом в электронной оболочке атома начинается новое главное квантовое число, которое равно номеру периода. Это иллюстрирует схема для подуровней первых четырех электронных оболочек (рисунок 3.28). Первая оболочка относится к самому легкому элементу водороду, с порядковым номером 1, т.е, он имеет 1 электрон на внешней оболочке. Следующий элемент в этом ряду гелий имеет 2 электрона на той же первой оболочке. Литий имеет 3 электрона 2 электрона на Is подуровне и 1 электрон на 2s подуровне. Таблица Менделеева содержит смесь горизонтальных рядов, т.е. семь периодов и восемь вертикальных рядов, названных группами. К периодически изменяющимся свойствам, которые определяются <a href="/info/188633">внешними электронными</a> оболочками, относятся наряду с химическими свойствами также атомный объем, <a href="/info/228098">напряжение ионизации</a>, <a href="/info/32063">температура плавления</a>, <a href="/info/108198">коэффициент расширения</a>, строение <a href="/info/347503">оптических спектров</a> и др. Элементы, расположенные в одном вертикальном столбце, обладают близкими свойствами при перемещении в направлении горизонтального ряда <a href="/info/78159">свойства элементов</a> постоянно изменяются, но характер их изменения повторяется в следующем периоде. С каждым периодом в <a href="/info/13887">электронной оболочке</a> атома начинается новое <a href="/info/22717">главное квантовое число</a>, которое равно номеру периода. Это иллюстрирует схема для подуровней первых четырех <a href="/info/13887">электронных оболочек</a> (рисунок 3.28). Первая оболочка относится к самому легкому элементу водороду, с <a href="/info/536897">порядковым номером</a> 1, т.е, он имеет 1 электрон на <a href="/info/737885">внешней оболочке</a>. Следующий элемент в этом ряду гелий имеет 2 электрона на той же первой оболочке. Литий имеет 3 электрона 2 электрона на Is подуровне и 1 электрон на 2s подуровне.
Теорию колебаний одномерной цепочки можно обобщить на трехмерный случай, что позволяет определить функцию распределения частот спектра колебаний атомной решетки.  [c.200]

Усреднение микроскопических значений законно в том случае, если линейные размеры области, где <Ем кр и <Н икр можно считать неизменными, значительно превыщают размеры атомов (молекул). Длина волны ), является тем отрезком, на котором напряженность поля сильно изменяется. Поэтому усреднение можно проводить лишь в том случае, когда /. значительно больше атомных размеров. Такое неравенство соблюдается для всего оптического диапазона спектра, включая короткие ультрафиолетовые лучи. Сложнее обстоит дело в рентгеновской области спектра, где ). 10 см, т. е. того же порядка, что и размеры атомов. В рамках данного курса количественные оценки будут проводиться лишь для оптического диапазона спектра, где законность усреднения микроскопических уравнений поля не вызывает сомнений.  [c.16]

В этом трудоемком исследовании измеренные значения частоты сравнивались с величиной действующего эталона (частота перехода между определенными уровнями структуры атомного спектра цезия), для чего пришлось создать ряд лазеров, генерирующих на разных частотах — от далекой инфракрасной области до видимой части спектра.  [c.51]

Для объяснения реально наблюдаемой устойчивости атомных систем и линейчатого характера спектров Н. Бором в 1913 г. была выдвинута первая квантовая теория атома водорода, которая по своему существу находилась в противоречии с классической механикой и электродинамикой. В основу теории Бором были положены допущения, введенные как постулаты (постулаты Бора), которые позднее формулировались так.  [c.6]

Удается вычислить и экспериментально определить коэффициенты внутренней конверсии, т. е. вероятность конверсии с той или иной электронной оболочки. Знание этих коэффициентов позволяет получить сведения об изменении спина ядра в результате излучения. Явление внутренней конверсии часто используется для изучения спектров у-лучей и установления уровней атомных ядер.  [c.260]

До сих пор мы рассматривали элементарный акт излучения или поглощения фотона одиночным атомом. Если речь идет о спектре испускания или поглощения ансамблем атомов, например, атомным газом, то обычный допплеровский сдвиг (и /с) os О и сдвиг из-за эффекта отдачи hv/2M приводят к разным явлениям. В газе присутствуют атомы, обладающие различными скоростями и движущиеся в различных направлениях. Поэтому член (0]/с) os 0, зависящий от проекции скорости на направление наблюдения  [c.658]


Для объяснения линейчатого спектра, испускаемого изолированным атомом, следовало предположить, что электрон в излучающем атоме совершает (почти) гармонические колебания, которые согласно классическим законам и обусловливают почти монохроматическое излучение. Поэтому на основании вида атомных спектров следовало предположить такое устройство атома, при котором электроны, входящие в его состав, способны совершать гармонические колебания, т. е. удерживаются около положения равновесия квазиупругой силой вида / = — кх, где к — постоянная, ах — отклонение электрона от положения равновесия.  [c.718]

Бор обобщил идеи Планка, предположив, что и в случае атома Резерфорда непрерывное излучение, требуемое классической электродинамикой, не имеет места. Для истолкования линейчатых спектров подобного атома нужно предположить, что лучеиспускание атомной системой происходит не так, как по обычным макроскопическим представлениям, вследствие чего при помощи этих представлений нельзя определить частоту излучения. Бор предположил, что излучение обладает частотой V, определяемой следующим условием для частоты  [c.721]

Оптические приборы и оптические методы исследования широко применяются в самых разнообразных областях естествознания и техники. Напомним, например, об изучении структуры молекул с помощью их спектров излучения, поглощения и рассеяния света, а также о применении микроскопа в биологии, об использовании спектрального анализа в металлургии и геологии. Оптические квантовые генераторы неизмеримо расширяют возможности оптических методов исследования. Приведем несколько примеров, иллюстрирующих положение дела. Один из новых методов — голография — подробно описан в главе XI. Изучение атомно-молекулярных процессов, протекающих в излучающей среде лазеров, а также рассеяния света и фотолюминесценции с применением лазеров позволило получить большой объем сведений в атомной и молекулярной физике, равно как и в физике твердого тела. Оптические квантовые генераторы заметно изменили облик фотохимии с помощью мощного лазерного излучения могут производиться разделение изотопов и осуществляться направленные химические реакции. Благодаря монохроматичности излучения оптических квантовых генераторов оказывается сравнительно простыми измерения сдвига частоты, возникающего при рассеянии света вследствие эффекта Допплера этот метод широко используется в аэро- и гидродинамике для излучения поля скоростей в потоках газов и жидкостей.  [c.770]

Итак, общую картину спектра излучения оптических квантовых генераторов можно представить следующим образом. В интервале длин волн, простирающемся от вакуумного ультрафиолета до далекой инфракрасной области, с помощью разнообразных активных сред удается получать усиление излучения в участках спектра с относительной шириной (со" — со )/со, составляющей в разных случаях от 10 (лазеры на красителях) до 10" (атомные и молекулярные газы). Положение этих участков спектра определяется частотами переходов между энергетическими уровнями, характерными для используемой активной среды (атомы, ионы, молекулы в газовой, жидкой и кристаллической фазе). В пределах каждого из упомянутых участков спектр генерируемого излучения имеет вид дискретных квазимонохроматических эквидистантных компонент, расстояние между которыми задается резонатором и составляет в относительной мере величину Асо/со = Х/2Ь = = 10" — 10 . Наконец, каждая из компонент представляет собой квазимонохроматическое излучение с ничтожно малой естественной спектральной щириной бсо 10 — 10 с , так что боз/со  [c.801]

Понятие спина электрона было введено в 1925 г. для объяснения тонкой структуры атомного излучения. В дальнейшем для объяснения сверхтонкой структуры оптических спектров было высказано предположение о существовании спина и магнитного момента у атомных ядер. Пои этом ввиду чрезвычайной малости сверхтонкого расщепления магнитный момент ядра должен быть примерно в 1000 раз меньше магнитного момента электрона.  [c.18]

Легко предсказать свойства нейтрино. В соответствии с законом сохранения электрического заряда и с тем, что нейтрино че ионизует атомов среды, через которую оно пролетает, заряд нейтрино должен быть равен нулю. Масса нейтрино тоже должна быть равна нулю (или во всяком случае много меньше массы электрона — см. п.З этого параграфа). Это связано с тем, что нейтрино уносит большую часть энергии р-распада. Из отсутствия ионизации следует также равенство нулю или чрезвычайная малость магнитного момента нейтрино. Спин нейтрино должен быть полуцелым. Это связано с тем, что характер спина (целый или полуцелый) атомного ядра определяется, как было показано в 4, массовым числом А. В процессе р-распада А не меняется и, следовательно, характер спина ядра должен сохраняться. Вместе с тем вылетающий в результате р-распада электрон уносит с собой спин /г/2, что должно привести к изменению характера спина ядра. Противоречие устраняется, если приписать нейтрино полуцелый спин. Теоретический расчет формы р-спектра, сделанный в разных предположениях относительно значения спина нейтрино, показал, что его спин должен быть равен h /2. Проведенное рассуждение одинаково справедливо как для р--распада, так и для р+-распада.  [c.144]

Существование дискретного спектра уровней при энергии возбуждения ядра, превышающей энергию присоединения нуклона, является необычным результатом. Например, в атомной физике аналогичной области энергий возбуждения (выше энергии ионизации) соответствует непрерывный энергетический спектр. Как можно объяснить дискретный характер спектра ядерных уровней  [c.317]


Согласно классической механике энергия какой-либо системы, в том числе атома и молекулы, может иметь любые значения. Для изолированной системы значение энергии определяется начальными условиями, которые, по классической теории, произвольны. Согласно современной квантовой теории возможные значения энергии системы атомов полностью определяются ее внутренними свойствами, т. е. числом и свойствами атомов, ядер и электронов, а также характером их взаимодействия. При этом начальные условия не влияют на возможные значения энергии данной атомной системы. Они показывают лишь количество атомов или молекул в начальный момент времени в том или ином состоянии с определенным значением энергии. Значения энергии, которые могут быть реализованы в данной системе, принято называть уровнями энергии (энергетическими уровнями). Совокупность всех возможных значений энергии, или уровней энергии, носит название энергетического спектра.  [c.224]

В настоящей главе рассмотрим спектры атомов. Вид спектра определяется строением их электронной оболочки и внешними факторами— температурой, давлением, магнитными и электрическими полями и т. д. Раздел спектроскопии, который изучает оптические спектры атомов, называется атомной спектроскопией, а раздел спектроскопии, который изучает спектры молекул, называется молекулярной спектроскопией.  [c.224]

Спектр поглощения или испускания данной атомной системы задается совокупностью значений частот спектральных линий или полос, а также распределением интенсивностей.  [c.226]

Теория атома водорода была развита Бором. Рассмотрим, следуя Бору, водородоподобную систему, состоящую из ядра с зарядом Хе (для водорода Х= ) и движущегося вокруг него по круговой орбите электрона. Заметим, что с точки зрения классической теории такая система является неустойчивой, так как движение электрона по круговой орбите должно сопровождаться испусканием света. При этом энергия атомной системы уменьшается. Вместе с тем уменьшается и радиус орбиты, а также сокращается период обращения. Частота обращения и частота испускания непрерывно растут. Электрон, постоянно приближаясь к ядру, должен упасть на него, после чего атом прекратит свое существование. Итак, по законам классической электродинамики атом должен быть неустойчив и в течение своего существования должен испускать непрерывный спектр, что противоречит опыту.  [c.231]

МЙКРО... (от греч. mikros — малый) — приставка к наименованию единицы измерения для образования наименования дольной единицы, составляю1цей одну миллионную долю от исходной единицы. Обозначается мк, U. Напр., 1 МКС (микросекунда) = 10" с. МИКРОВОЛНОВАЯ СПЕКТРОСКОПИЯ — область радиоспектроскопии, в к-рой спектры атомов и молекул в газовой фазе исследуют в диапазоне от дециметровых до субмиллиметровых длин волн (10 — IQi Гц). Объектами М. с. являются вращательные и НЧ колебательные спектры молекул, молекулярных ионов, комплексов и радикалов, тонкая и сверхтонкая структура молекулярных спектров, спектры тонкой и сверхтонкой структуры атомов и ионов, электронные спектры возбуждённых атомов (см. Молекулярные спектры. Атомные спектры). В микроволновых спектрометрах используют монохроматические, перестраиваемые по частоте источники излучения — генераторы СВЧ  [c.133]

В книге описана экспериментальная техника, спектральные приборы, оптические материалы и источники света, применяемые при исследованиях, связанных с использованием вакуумной ультрафиолетовой области спектра. Изложены также основные результаты по применению этой области к изучению плазмы, атомных спектров, атомных столкновений, флуоресцентного и эмиссионного спектрального анализа. Книга написана по тому же плану, что и написанная десять лет назад книга этих же авторов Спектроскопия вакуумного ультрафиолета и отражает большие достижения вакуумной спектро-скошии за последнее десятилетие.  [c.4]

Фено.менологическое описание коллективных спектров. Атомные ядра по характеру спектра уровней вблизи основного состояния могут быть грубо разделены иа три группы а) магические и околомагиче-ские ядра б) ядра, в к-рых наблюдается колебат. снектр в) деформированные ядра с вращательным спектром. Возбужденные состояния магич. и около-магич. ядер объясняются взаимодействием нуклонов в незаполненной оболочке. Энергии возбуждений таких ядер велики — норядка расстояния между оболочками. О. м. я. рассматривает вторую и третью группы ядер. В атомных ядрах возможны различные виды коллективных движений, папр. колебания плотности, связанные с объемной сжимаемостью ядерной материи и имеющие энергию возбуждения в тяжелых ядрах 10 Мэе. Энергия возбуждения дипольных колебаний нейтронов относительно протонов достигает 15—20 Мзв. Т. о., частоты этих колебаний лежат довольно высоко. Особую роль в О. м. я. играют иоверх-постные ко.лебания, имеющие относительно малую энергию возбуждения.  [c.457]

За последнеэ время за рубежом был издан ряд монографий, посвященных спектрам атомов и молекул. Однако большинство из них нэ представляет особой ценности (некритический отбор материала, неполнота приводимых сведений, односторонность изложения). В этом отношении выгодно выделяются книги, написанные Герцбергом — крупным специалистом в области атомной и молекулярной спектроскопии. Перу Герцберга принадлежит серия книг по анализу спектров Атомные спектры и строение атомов , Молекулярные спектры и строение двухатомных молекул , Колебательные и вращательные спектры многоатомных молекул . Первая книга уже издана на русском языке, а треть предлагается в настоящее время вниманию советского читателя. (Отметим также, что автором обещана еще четвертая книга, завершающая серию по молекулярным спектрам Электронные спектры многоатомных молекул .)  [c.6]

Другим видом энергетических потерь заряженной частицы М, пролетающей через вещество, являются потери энергии иа тормозное излучение. Особенно велики эти потери для электронов больших энергий. Электрон, [фолетающий через вещество, испытывает сильное взаимодействие со стороны электрического поля атомных ядер вещества и претерневает отклонение. Так как заряд ядра Ze значительно больше заряда электрона, а масса электрона т очень мала по сравнению с массой ядра (Мдд 1836 т), то электрон испытывает резкое торможение в иоле ядра и при этом теряет значительную часть своей энергии, испуская квант (фотон) электромагнитного излучения. Эти потери энергии вследствие излучения называются радиационными потерями или потерями на тормозное излучение. Примером радиацнонного излучения электронов является рентгеновское излучение (имеющее сплошной спектр), возникающее прн бомбардировке антикатода рентгеновской трубки электронами.  [c.28]

Итак, экспериментальные исследования Резерф< )рда по рассеянию а-частиц при их прохождении через тонкие металлические листки показали, что основная масса атома и положительный электрический заряд сосредоточены в небольшой (lO — 10 м) центральной области атома, именуемой атомным ядром. В нейтральном атоме вокруг ядра обращается Z электронов. Такая мОт дель получила название ядерной модели атома. Ядерная модель атома в сочетании с квантовыми закономерностями объясняет возникновение и структуру атомных спектров процессы возбуждения и ионизации атомов, свойства молекул, свойства твердых тел (металлов) и т. д.  [c.81]


Правда, и линии атомного линейчатого спектра не представляют собой беспорядочного скопления. Внимательное изучение линейчатых спектров уже давно привело к установлению определенных закономерностей в их расположении. Лишь в начале XX века удалось установить физический смысл, заложенный в этих закономерностях, и вслед затем найти им объяснение в особенностях строения атома (Бор, 1913 г.). Таким образом, создание теории атома шло рука об руку с объяснением спектральных закономер-  [c.711]

Установление сериальных закономерностей, связь между сериями (принцип Ритца), универсальность постоянной Ридберга — всё свидетельствовало о глубоком физическом смысле открытых законов. Тем не менее, попытки установить на основании этих законов внутренний атомный механизм, обусловливающий найденные закономерности, потерпели решительную неудачу. Было ясно, что каждая серия полностью вызвана одним и тем же механизмом. Между тем трудно представить себе возможность излучения целого ряда частот таким простым атомом, как, например, атом водорода. Известны, конечно, типы механических излучателей, дающих ряд колебаний, например струна. Однако спектр такого излучателя состоит из основной частоты и ее обертонов, представляющих целые кратные от основной, даже отдаленно не напоминая закономерностей, наблюдаемых в спектральных  [c.717]

В зависимости от внешних условий и свойств излучающего атома преобладать может либо та, либо другая причина уширения. При достаточно низких давлениях основную роль играет допплеровское уширение в видимой области спектра Асод a 10 с (Т = 500 К, атомный вес 20). Естественная ширина обычно значительно меньше ( 10 " ). Поэтому для ее изучения Вин и применял в качестве источника света атомный пучок (каналовые лучи, см. 158). Понятно, что уширение из-за неупругих столкновений и фазовой модуляции увеличивается с ростом давления, так как при этом сокращается время свободного пробега. Обычно уширение из-за столкновений становится заметным при давлениях, превышающих 10 мм рт. ст., и начинает преобладать при давлениях порядка атмосферы.  [c.741]

При обсуждении спектра водорода упоминалось, что в нем наряду с дискретными спектральными линиями, составляющими серии, наблюдается ряд полос, которые при исследовании приборами с достаточной разрешающей способностью расчленяются на ряд тесно расположенных друг около друга линий, образуя так называемый многолинейчатый, или полосатый, спектр. Подобной особенностью отличаются и спектры других газов, молекулы которых состоят из двух или нескольких атомов. Наоборот, для одноатомных газов (благородные газы, пары металлов) характерны только линейчатые атомные спектры. Правда, при значительном давлении пары металлов (например Hg, 2п и др.), равно как и благородные газы, также излучают полосатые спектры, но, как показывают разнообразные исследования, при этих условиях в парах образуются нестойкие соединения типа Hg2, Пег, HgH, Сзо и т. д., т. е. молекулы, с существованием которых и связано излучение полосатых спектров.  [c.744]

Указанным критериям отвечает новый метод снятия остаточных напряжений физические основы которого можно сформулировать сле> дующим образом. Как показано при теоретическом исследовании, каждому кристаллическому материалу соответствует вполне определенный дискретный спектр собственных частот колебаний атомов в решетке. Последний определяется типом дислокаций, характерных для данной структуры твердого тела, и может быть, в принципе, рассчи> тан для любого материала. Если подвести к кристаллу анергию, равную величине Wi = hv,, (Wi — пороговый уровень энергии, h — постоянная Планка, — частота колебаний 1-моды в спектре), то эта энергия избирательно поглотится кристаллической решеткой, что приведет к резкому повышению амплитуды атомных колебаний i-моды.  [c.149]

Эффект Зеемана лежит в основе объяснения двух главных магнитооптических явлений — магнитного вращения плоскости поляризации (эффект Фарадея) и магнитного двойного лучепреломления (эффект Коттона — Мутона). Изучение эффекта Зеемана на спектральных линиях атомов в видимой и ультрафиолетовой областях сыграло большую роль в развитии учения о строении атома, особенно в период, последовавший за созданием теории Бора. В настоящее время исследование эффекта Зеемана на спектральных линиях атомов представляет собой один из важных методов определения характеристик уровней энергии атомов и значительно облегчает интерпретацию сложных атомных спектров. Изучение зеема-новского расщепления спектральных линий позволяет также получать ценные сведения о магнитных полях, в источниках света, например при исследовании Солнца.  [c.102]


Смотреть страницы где упоминается термин Спектры атомные : [c.438]    [c.186]    [c.169]    [c.115]    [c.162]    [c.11]    [c.248]    [c.7]    [c.659]    [c.746]    [c.16]    [c.245]   
Атомная физика (1989) -- [ c.78 ]



ПОИСК



АТОМ В ПОЛЕ СВЕРХАТОМНОЙ НАПРЯЖЕННОСТИ Коллапс атомного спектра в сверхсильном высокочастотном поле

АТОМНЫЕ И МОЛЕКУЛЯРНЫЕ СПЕКТРЫ

Атомные спектры и периодическая система Менделеева

Атомные спектры и периодическая система элементов

Атомный вес

ВОЗМУЩЕНИЕ АТОМНОГО СПЕКТРА Эффект Штарка в постоянном поле

Влияние на атомные спектры внешних магнитного и электрического полей

Дискретный и непрерывный спектры атомных состояний . 2.5.2. Оптическая поляризация атомарной среды

Идея опытов Франка Герца. Схема опытов. Интерпретация результатов опыта Атомные спектры

Матричный сдвиг спектральных полос в спектрах атомных

Метод пар линий в атомных спектрах

Наиболее интенсивные линии атомного спектра ртути

Одноэлектронные и многоэлектронные атомы и ионы. Система энергетических состояний атома и атомные спектры

Структура атомных спектров

Уширен ив спектральных полос в атомных спектрах



© 2025 Mash-xxl.info Реклама на сайте