Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стокса эксперименты

Степени свободы тела 338 Стокса эксперименты 92, 130  [c.463]

Ввиду невозможности получить точное решение уравнений Навье — Стокса и уравнения энергии для подавляющего большинства задач гидродинамики и газовой динамики прибегают либо к приближенным решениям, либо к экспериментам на моделях. В последнем случае возникает вопрос об условиях подобия для обтекания натурного объекта и его модели.  [c.75]


В отличие от ламинарного течения, для которого связь между коэффициентом сопротивления (или перепадом давления) и расходом жидкости определяется теоретически из решения уравнений Навье — Стокса, при турбулентном режиме такая связь может быть найдена только в том случае, если профиль скорости известен из эксперимента. Как уже указывалось в 4, профиль скорости в пограничном слое на плоской пластине при Ri= 10 —10 (Ra=2- 10 —10 ) хорошо описывается степенной формулой с показателем 1/7, которая в выбранной системе координат имеет вид  [c.351]

Диффузия больших молекул в растворителе. Диффузии в жидкостях обусловлена процессами многочастичного взаимодействия пробной частицы с частицами жидкости. Поэтому теоретическое определение коэффициентов диффузии в жидкостях весьма затруднено п практически единственным источником надежной информации является эксперимент. Исключение составляет случай диффузии больших молекул в растворителе с низкой молекулярной массой, для описания которого применима формула Эйнштейна—Стокса  [c.376]

В основе вывода уравнения Навье—Стокса лежит предположение о законе трения (6.2), которое может быть проверено только экспериментально. Имеющиеся немногие частные решения уравнения Навье—Стокса (например, ламинарное или слоистое течение в трубе) подтверждаются экспериментами.  [c.141]

Отмеченное совпадение результатов расчетов ламинарных течений с экспериментом служит основой для заключения о справедливости уравнений Стокса и их применимости для теоретического описания движений вязкой жидкости. Не следует, однако, думать, что отсутствие в ряде случаев возможности сделать такое заключение может служить основанием для утверждения о несоответствии теории действительности.  [c.522]

Указанные явления отчетливо наблюдались в экспериментах [48]. Импульсы накачки с длительностью 30 пс и пиковой мощностью 300 Вт перестраивались по частоте в диапазоне 1,17—1,35 мкм. При длине волны накачки Х ==1,2б мкм на выходе волоконного световода (L==250 м) регистрировались стоксовы импульсы со сдвигом частоты 450 см 1, соответствующим центру линии усиления. По мере отстройки от длины волны, соответствующей нулевой дисперсии групповой скорости, величина стоксова сдвига уменьшалась (рис. 3.15). В экспериментах [49] измерения производились при фиксированной длине волны ь = 1,32 мкм, варьируемым параметром была длина световода, а регистрируемым — стоксов сдвиг частоты, который уменьшался с увеличением длины световода.  [c.139]


Для определения углового сопротивления кручению профиля, составленного из двух или большего числа узких прямоугольников, лучше всего основываться на аналогии Прандтля, хотя здесь оказывается удобной и теорема Стокса. При применении аналогии Прандтля мы можем воспользоваться сохранившимся в нашей памяти опытом, накопившимся у нас в детстве, когда мы еще играли с мыльными пузырями. До известной степени этот практический опыт может заменить нам эксперимент, производимый указанным выше образом для определения углового сопротивления при кручении.  [c.82]

До настоящего времени не известно ни одного решения уравнения Навье-Стокса, о котором можно было бы сказать, что оно описывает турбулентный поток. Однако, если бы даже и удалось найти такое решение, оно, конечно же, оказалось бы бесполезным для вычисления характеристик движения, наблюдаемых в экспериментах. Поэтому в теории турбулентности рассматриваются величины, усредненные по ансамблю реализаций движения или по времени. Отметим, что многие простые и замечательные закономерности в турбулентных течениях удается сформулировать именно в терминах средних величин ).  [c.255]

Ниже будут рассмотрены методы построения моделей сплошных сред, т. е. методы отыскания необходимого числа определяющих течение параметров и построения управляющих ими уравнений, с помощью кинетического уравнения Больцмана. В принципе соответствующие уравнения для макроскопических величин можно построить и из феноменологических (макроскопических) рассмотрений, минуя кинетическую стадию ). Однако входящие в эти уравнения кинетические коэффициенты (коэффициенты вязкости, теплопроводности, диффузии и т. п.) не могут быть найдены из феноменологических теорий и для их определения требуются дополнительные соображения или эксперименты. Так, например, при феноменологическом выводе уравнений Навье—Стокса, предполагая пропорциональность компонент тензора напряжений компонентам тензора деформаций, мы должны ввести 81 неизвестный коэффициент пропорциональности. Вводя дополнительные предположения об изотропности и однородности среды, все эти коэффициенты удается выразить через два коэффициента вязкости, кото-  [c.96]

Опыты проводились в аргоне, гелии, неоне, криптоне и ксеноне. Приведенное сравнение показывает, что уравнение Навье — Стокса обладает удовлетворительной точностью лишь при низких частотах колебаний. Решение, полученное с помощью разложения в ряд (5.3), оказывается более точным, чем решение Навье—Стокса, вплоть до чисел /- 1. Однако при еще меньших числах г оно также резко расходится с экспериментом.  [c.313]

Другой тип коррекции БГК-модели получается при выводе модельного уравнения, приводящего к таким же уравнениям Навье — Стокса, что и полное уравнение Больцмана. Действительно, как будет показано в следующей главе, модельное уравнение (БГК) дает значение числа Прандтля Рг = 1, т. е. значение, отличающееся от получаемых и из уравнения Больцмана, и из эксперимента для одноатомных газов (эти результаты согласуются друг с другом, они дают Рг 2/3). Чтобы иметь правильное значение числа Прандтля, требуется еще один свободный параметр, кроме уже использованного параметра V. Это приводит (см. указания) к обобщению БГК-модели путем подстановки локального анизотропного гауссовского распределения вместо локального  [c.103]

Следовательно, сформулированные выше условия в данном случае оказываются не только необходимыми, но и достаточными для существования механического подобия. Однако такое заключение нельзя распространить на произвольное движение вязкой жидкости, поскольку теорема существования и единственности решения уравнений Навье — Стокса доказана хотя и для многих, но все же частных классов движения. В общем случае необходимые и достаточные условия подобия не определены. Правда, это не исключает возможности практического использования теории подобия. В практике при постановке эксперимента существование и единственность группы потоков, подобных натурному, предполагают apriori, модель выполняют, исходя из необходимых условий подобия, и ее принадлежность к указанному классу проверяют на основе сопоставления частично известных натурных данных с результатами измерений на модели.  [c.123]


Более ста последуюш их лет развитие науки о равновесии и движении жидкости происходило по двум различным направлениям. Одно направление развивалось по линии строгих математических решений, используя уравнения Эйлера и принимая при этом ряд допущений (Лагранж, Лэмб, Навье, Стокс, И. С. Громека и др.). Однако наличие ряда существенных упрощений не позволило использовать полученные этим методом результаты для решения конкретных практических задач. Это заставило ученых и инженеров прибегать к экспериментированию и на основании опытных данных создавать расчетные формулы для решения разнообразных гидравлических задач, выдвигавшихся бурно развивавшейся техникой (Шези, Буссинек, Дарси, Базен, Вейсбах, Дюпюи и др.). Таким образом, независимо от аэрогидромеханики практическая гидравлика продолжала свое развитие как опытная наука, опережая первую в целом ряде областей. Однако без наличия серьезного математического аппарата она, естественно, не в состоянии была обобщить данные сложного эксперимента.  [c.7]

Н. Н. Брушлинская [45], [46] применила теорию бифуркаций торов к гидродинамическим уравнениям Навье — Стокса — область, ставшая модной лишь после того, как Рюэль и Такенс объявили о ее связи с турбулентностью [190] (см., впрочем, доклад А. Н. Колмогорова Эксперимент и математическая теория в изучении турбулентности и Н. Н. Брушлинской [46] на заседании Московского математического общества 18 мая 1965 г.). Обзор современного состояния теории бифуркаций торов, написанный Броером, см. в [129]. Бифуркация рождения цикла в гидродинамике исследовалась также В. И. Юдовичем [118] и подробно обсуждается в книге [173]. Эта книга ценна также обширным списком литературы. Ориентированное на вычислителя изложение теории и приложений бифуркации рождения цикла содержится в [160]. Бифуркации в распределенных системах и их приложения к теории горения обсуждаются в обзорах [54], [55]. О бифуркациях торов, рождающихся при потере устойчивости автоколебаний, см. [М], [123].  [c.208]

В постановке и решении ряда задач аэродинамики, в частности для схематизации движения воздуха и его действия на тела, немаловажную роль ыграли различные гидродинамические модели [26] При этом большую роль сыграли ударная теория сопротивления И. Ньютона (1686 г.), теория идеальной несжимаемой жидкости, разработанная Д. Бернулли (1738 г.) л Л. Эйлером (1769 г.), теория вязкой несжимаемой жидкости, созданная А. Навье (1822 г.) и Дж. Г. Стоксом (1845 г.), теория струйного обтекания тел, развитая Г. Гельмгольцем (1868 г.), Г. Кирхгофом (1869 г.), а в дальнейшем Рэлеем (1876 г.), Д. К. Бобылевым (1881 г.), Н. Е. Жуковским (1890 г.), Дж. Мичеллом (1890 г.), А. Лявом (1891 г.). Особое значение для становления аэродинамики имели работы Г. Гельмгольца, заложившего основы теории вихревого движения жидкости (1858 г.). В начале XIX в. появились понятия подъемной силы (Дж. Кейли) и центра давления. Дж. Кейли впервые попытался сформулировать основную задачу расчета полета аппарата тяжелее воздуха как определение размеров несуш,ей поверхности для заданной подъемной силы [27, с. 8]. В его статье О воздушном плавании (1809 г.) предложена схема работы плоского крыла в потоке воздуха, установлена связь между углом атаки, подъемной силой и сопротивлением, отмечена роль профиля крыла и хвостового оперения в обеспечении продольной устойчивости летательного аппарата я т. п. [28]. Кейли также занимался экспериментами на ротативной маши-де. Однако его исследования не были замечены современниками и не получили практического использования.  [c.283]

Наиб, успехи в использовании динамич. подхода достигнуты при исследовании перехода от ламинарного к хаотическому во времени течению жидкости. Наиб, распространённые сценарии перехода к хаосу в простых ситуациях (течение Тейлора—Куэтта между вращающимися цилиндрами, термоконвекция)—это разрушение квазипериодич. движений перемежаемость бесконечная последовательность удвоений периода. В экспериментах наблюдаются и более сложные сценарии, однако обнаружение именно этих канонич. сценариев в реальных течениях обосновало справедливость представлений о дннамнч. характере процессов в области перехода к Т. Эти же сценарии обнаружены и в численных экспериментах с полными [точнее, моделируемыми на компьютере с достаточно большим числом (>10 ) ячеек сетки] ур-ииями Навье—Стокса при числах Рейнольдса Ю .  [c.183]

IB этой области течения не решена в удовлетворительном виде до сих пор основная проблема — проблема формулирования соответствующих дифференциальных ура1внений и граничных условий, описывающих течение газа. Для некоторой части этой области, примыкающей к области континуума, в ряде работ предполагалось возможным использование уравнений Навье-Стокса (или их предельного случая — уравнений Л. Прандтля для пограничного слоя) в сочетании с граничными условиями, предполагающими скольжение газа (Л. 5—9]. Однако результаты появившихся в последнее В1ремя опытных исследований показали в большинстве случаев непригодность полученных таким путем решений. Аналитические решения различных авторов плохо согласуются друг с другом и с экспериментом. Такое положение в теории объясняется, в известной мере, отсутствием детальных опытных сведений об этой области течения. Имеющиеся экспериментальные данные весьма ограниченны и очень малочисленны. На графиках рис. 1 г оказаны диапазоны всех известных в настоящее время исследований сопротивления и теплообмена в промежуточной области, между континуумом и свободно молекулярным течением.  [c.463]

Теоретические решения задач о движении вязкой жидкости с помош,ью уравнений Навье—Стокса, как уже отмечалось, хорошо совпадают с экспериментом. Однако это совпадение наблюдается только при достаточно малых числах Не. Опыт показывает, что если числа Не превосходят некоторый предел, то ламинарное течение становится невозможньтм и возникает новый тип течения, которое называется турбулентным. Систематические исследования в этом направлении начались с известного опыта Рейнольдса.  [c.159]


В разд. 4 изложены основные сведения о математических методах, широко используемых в инженерной практике и, в частности, при создании новых математических моделей для решения задач теплоэнергетики и теплотехники. Дан необходимый справочный материал. В новой редакции учтены пожелания и замечания читателей, высказанные по предыдущим изданиям. Включен дополнительный материал по полиномиальным преобразованиям, расширены сведения, относящиеся к вероятностным методам. В то же время такие разделы математики, как стоксов формализм, обобщенные функции и некоторые другие, не нашедшие широкого применения в практике инженеров-теплотех-ников, сокращены. За счет этого существенно расширен и переработан параграф Численные методы . Поскольку численные методы вместе с теорией алгоритмов, языками программирования и операционными системами составляют ядро вычислительного эксперимента как новой научной методологии, редакторы серии сочли целесообразным отнести этот материал в следующий раздел, посвященный применению средств вычислительной техники в инженерной деятельности.  [c.8]

Из экспериментов известно, что хотя для больших газовых пузырей характерна внутренняя циркуляция, малые пузыри ведут себя подобно твердым сферам и движутся с установившейся скоростью, приближающейся к скорости, соответствуюндей закону Стокса. Левич [21] показал, что это связано скорее всего с наличием в жидкости следов поверхностно-активных веществ, которые накапливаются на поверхности раздела. Они сносятся течением  [c.151]

Тело, падающее под действием силы тяжести, обычно достигает постоянной установившейся скорости падения, когда ускоряющая его гравитационная сила с учетом поправки на плавучесть равняется тормозящей силе сопротивления. Для обтекания сферы применим закон Стокса, сравнимые соотношения имеются и для тел других форм, как это обсуждалось в гл. 4 и 5. Многочисленные эксперименты, проведенные со сферами в самых разных средах, показывают, что при значениях чисел Рейнольдса iVRed построенных по диаметру сферы, меньших 0,05, отклонения от закона Стокса не превышают 1%. Число Рейнольдса, равное 0,05, соответствует падающей в воздухе сфере диаметром 77 мкм и единичной плотности.  [c.476]

Фундаментальные эксперименты, лежащие в основе определения вязкости однородных жидкостей,— это обычно линейные эксперименты, линейные в том смысле, что инерционные члены в уравнениях Навье — Стокса либо а) тождественно равны нулю, как имеет место в сдвиговом течении между параллельными плоскостями или в течении Пуазейля в капилляре б) пренебре-  [c.499]

Сравнение теоретического коэффициента сопротивления Стокса с экспериментом, пряведенное на рис. 9-5, показывает, что формула (9-17) справедл1ива, если Reрешение Стокса неприменимо.  [c.191]

В работах Пуассона (1828) и Стокса (1849) четко установлена возможность существования в неограниченной изотропной упругой среде двух типов волн, распространяющихся с различной скоростью. Одна из них характеризуется безвихревым изменением объема (безвихревая продольная волна), другая связана с искажением формы (эквиволюмиальная поперечная волна). Открытие этих типов волн способствовало появлению трудностей в толковании исходной гипотезы Френеля. Особенно сильно эти трудности проявились при рассмотрении задачи об отражении и преломлении плоских волн на границе раздела двух упругих сред. В работах Коши (1830— 1836) и Грина (1839) установлено, что для выполнения шести граничных условий, выражающих непрерывность смещений и напряжений на границе раздела, необходимо учитывать как поперечные, так и продольные волны. Однако продольные световые волны в экспериментах не были обнаружены. Интересно, что открытые Рентгеном (1895) новые лучи вначале отождествлялись рядом физиков (в том числе и автором открытия) с продольными световыми волнами.  [c.9]

Если имеется рассеивание энергии и если только объемное расширение происходит не бесконечно медленно, а имеется некоторая конечная скорость расширения е , то это явление заключает в себе некоторый вид вязкости которую мы можем назвать объемной вязкостью. При этом не имеет значения, идет речь о жидкости или о твердом теле. Это находится в соответствии с первой аксиомой реологии, которая (другими словами) гласит, что при простом изменении объема или плотности любой материал ведет себя как твердое тело. Конечно, всегда можно принять, что для некоторого класса жидкостей t, равно нулю, и этот класс жидкостей следует назвать стоксовским, так как именно это предположение принял Стокс (1851 г.), когда выводил знаменитые дифференциальные уравнения течения вязкой жидкости Навье — Стокса, названные так в честь него и Навье (Navier, 1823 г.). До недавнего времени это предположение было общепринятым как удовлетворяюш ее реальным условиям, но Тисца (Tisza, 1942 г.) указал, что в реальных жидкостях должно быть довольно большим, а я указал на некоторые следствия обраш ения в нуль, которые не вполне согласуются с экспериментом и о которых более подробно будет сказано в главе XII.  [c.103]

В 1894 г. Адальберт Михель Бок (Воск [1894,1]) предположил, что коэффициент Пуассона при малых деформациях должен возрастать с ростом температуры, достигая значения 1/2 в точке плав-ления. Клеменс Шефер (S haefer [1902,1]) в 1902 г. приписывал это предположение как Боку, так и Джорджу Габриэлю Стоксу при этом он не ссылался на какие-либо работы Стокса ). Бок считал, что экспериментальное доказательство этого факта во многом прольет свет на атомно-молекулярное строение твердых тел. Сожалея о том что он не был в состоянии определить коэффициент Пуассона во веж диапазоне от низкой температуры кипящего водорода до точки плавления, он ограничил свои эксперименты определением того, югyт ли быть установлены какие-либо зависимости в области температур от О до 150°С. Шефер, также придерживавшийся, как мЫ увидим, этой гипотезы точки плавления , определил коэффициент Пуассона при комнатной температуре для материалов с предельно низкими температурами плавления, таких, как селен, сплавы By-  [c.368]

В заключение остановимся на общей проблеме установления подобия гидродинамических процессов с помощью уравнений Навье — Стокса. Как известно, вопросы подобия в простейших задачах прочности рассматривал в своих Беседах еще Г. Галилей (1638), а более общий критерий динамического подобия сформулирован в Началах И. Ньютона (1687). В теории теплоты принципом подобия широко пользовался Ж. Фурье. Однако анализ обпщх уравнений гидродинамики с точки зрения подобия не производился сколь бы то ни было систематически, по-видимому, вплоть до середины XIX в., когда Дж. Г. Стокс (1851) попытался сформулировать обпще принципы динамического подобия течений. Более подробно такой анализ был проведен в 1873 г. Гельмгольцем, который использовал некоторые свои результаты и для непосредственного пересчета различных экспериментов. Но и эта работа не определила, по существу, всестороннего внедрения методов подобия в гидродинамику. Этот процесс проходил весьма медленно, теоретические дискуссии об основах метода подобия и размерности развернулись в начале XX в., а практическое внедрение, например числа Рейнольдса, в инженерные расчеты завершилось лишь в конце первой четверти XX в.  [c.73]


Все изложенное относится к теории ламинарного пограничного слоя, которая находится во вполне удовлетворительном согласии с экспериментом и качественно подтверждается также имеющимися немногочисленными точными решениями уравнений Навье — Стокса. Однако на самом деле при повышении скоростей пограничный слой переходит в турбулентное состояние, что меняет весь режим течения (реальные струи, как правило, всегда турбулентны). Первоначально с этим явлением столкнулись в связи с экспериментальным исследованием коэффициента лобового сопротивления шара (Дж. Костанци, Л. Прандтль, Г. Эйфель). Оказалось, что при достижении чисел Рейнольдса порядка 10 дальнейшее увеличение числа Рейнольдса приводит к резкому падению коэффициента сопротивления шара примерно в два раза. Этому удивительному явлению дал объяснение Л. Прандтль Он показал, что при достижении указанных чисел Рейнольдса отрыв пограничного слоя вызывает его турбулизацию и последующее присоединение, что задерживает в целом отрыв потока от обтекаемого тела и тем самым резко снижает сопротивление ( кризис обтекания и сопротивления.)  [c.298]

Учитывая сделанные выше замечания, из приведенного сравнения можно все же сделать вывод, что при малых числах Маха теория Навье — Стокса согласуется с экспериментом. При больших числах Маха экспериментальные данные гораздо ближе к теории Тамма - Мотт-Смита. Навье-стоксовские профили плотности и скорости обладают значительной несимметрией (S—10 — 20%), в то время как несим-метрия профиля температур меньше, чем по Тамму — Мотт-Смиту.  [c.302]

Рэлей (Джон Уильям Стретт, с 1873 г.—лорд Рэлей, 1842—1919) — знаменитый английский физик. Предметом его наиболее известных исследований являлись теория распространения звука и света, а также электричество, его книга Теория звука является классической и до сих пор широко используется. Его научные труды составили шесть томов, выдержавших два издания ([11,9] и [11.10]). Дж, У. Стретт учился в Тринити-колледже Кембриджского университета, где преподавали Э. Дж. Раус и Дж. Г. Стокс. Наряду с изучением теории он много занимался экспериментами. В 1879 г. он стал профессором Кавендишской лаборатории в Кембридже, а впоследствии был избран профессором натуральной философии Королевск -  [c.559]

Другой тип коррекции БГК-моделп получается при выводе модельного уравнения, приводяпхего к таким же уравнениям Навье — Стокса, что и полное уравнение Больцмана. Действительно, как будет показано в гл. V, БГК-модель дает значение числа Прандтля Рг = 1, т. е. значение, которое отличается от получаемых и из уравнения Больцмана, и из эксперимента для одноатомных газов (которые, согласуясь друг с другом, дают Рг 2/з). Чтобы получить правильное значение числа Прандтля, требуется дополнительный подгоночный параметр, кроме уже имеющейся частоты V. Это ведет [25, 26] к обобщению БГК-модели путем подстановки локального анизотропного трехмерного гауссовского распределения вместо локального максвеллиана (который представляет собой изотропное гауссовское распределение)  [c.114]

Полученные результаты нас вполне устраивают. Действительно, мы нашли, что, когда средняя длина свободного пробега пренебрежимо мала по сравнению с макроскопической длиной, удовлетворяются определяюнхне соотношения Навье — Стокса для сжимаемой жидкости (обобнденне на трехмерный случай дается в разд. 11). Кроме того, получены общие формулы (7.66) и (7.67) для коэффициентов вязкости и теплопроводности. Следует отметить, что эти коэффициенты переноса оказываются зависящими только от температуры и молекулярных констант (плотность исключается, поскольку она входит в /о и L как множитель с показателями степени 1 и —1 соответственно). Этот факт независимости вязкости от плотности был одним из первых успехов кинетической теории, так как он был предсказан до соответствующего эксперимента.  [c.224]

Длина волны света, используемого в экспериментах, обычно мала по сравнению со средней длиной свободного пробега частиц газа, но волновое число к , входящее в 5(к, со), равно 2 ко 51п( /2), где ко — волновой вектор падающего излучения, а — угол между ко и волновым вектором кз рассеянного света. Соответственно для каждого угла наблюдения существует определенная флуктуация длины волны, и потому, меняя угол, можно измерить преобразование Фурье корреляционной функции плотность-плотность. При достаточно малых углах мы находимся в континуальном режиме и можно использовать гидродинамическую теорию, основанную на уравнениях Навье — Стокса. Однако следует ожидать, что, если средняя длина свободного пробега велика по сравнению с длиной волны, а угол тЭ не очень мал, то профили, предсказываемые континуальной теорией, не совпадут с экспериментальными. Поэтому Ип и Нелькин [78] предложили использовать эксперименты по рассеянию для проверки линеаризованного уравнения Больцмана. Действительно, согласно проведенному выше рассуждению, корреляционная функция плотности С (г, О определяется формулой  [c.383]


Смотреть страницы где упоминается термин Стокса эксперименты : [c.133]    [c.74]    [c.33]    [c.236]    [c.622]    [c.382]    [c.181]    [c.519]    [c.519]    [c.65]    [c.75]    [c.104]    [c.246]    [c.278]    [c.70]    [c.301]   
Динамика системы твёрдых тел Т.1 (1983) -- [ c.92 , c.130 ]



ПОИСК



Стокс



© 2025 Mash-xxl.info Реклама на сайте