Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точность дифференциальные

Применяемые в настоящее время датчики пневматических систем в зависимости от конструкции чувствительного элемента разделяются на мембранные и сильфонные. Мембранные применяются при автоматическом контроле параметров, ограниченных одним определенным пределом, а также при особо высоких требованиях к точности. Дифференциальные сильфонные датчики применяются при контроле наибольшей разности отклонений размеров, при проверке незакономерных отклонений изделий от правильной геометрической формы и при рассортировке деталей на размерные группы. Основные технические данные пневмоэлектроконтактных датчиков приведены в табл. 18.  [c.175]


В ряде случаев с достаточной для практики точностью дифференциальную магнитную проницаемость можно рассчитать по построенной кривой намагни-  [c.21]

Подставляя полученные выражения в (6.6.43), получим, что в пределах принятой точности дифференциальное уравнение для р имеет тот вид, что и уравнение (6.6.43) для  [c.72]

Дифференциальные фазометры применяются, когда необходимо измерить только отклонение фазового сдвига, создаваемого каким-либо устройством, от фазового сдвига образцового устройства. Полный фазовый сдвиг измерить в этом случае не удается. Достижимая точность дифференциальных фазометров - от долей градусов до нескольких градусов.  [c.64]

Контроль точности цилиндрических резьб осуществляют комплексными и дифференциальными (т. е. поэлементными) методами.  [c.175]

Стержни с непрерывно меняющимися по длине размерами сечений. Если размеры сечения стержня непрерывным образом изменяются по длине, то фор<мулы, полученные на основании гипотезы плоских поперечных сечений, становятся, вообще говоря, неверными (как и сама гипотеза). Однако некоторые точные решения теории упругости показывают, что в том случае, когда угол наклона образующей поверхности стержня к его осп невелик (не превышает 15— 20 ), с достаточной для инженерной практики точностью можно принимать распределение нормальных напряжений по высоте сечения прямолинейным. Тогда, естественно, можно пользоваться обычным условием прочности и дифференциальным уравнением упругой линии, т. е.  [c.302]

Для определения порядка точности многих практических разностных схем достаточно определить порядок аппроксимации дифференциального оператора разностным, так как порядки точности и аппроксимации для них совпадают. Однако разностная схема, для которой такое утверждение может быть доказано, должна обладать еще одним важным свойством — устойчивостью. Устойчивая разностная схема — схема, в которой не происходит наращивания малых ошибок округления, допущенных на начальных стадиях решения.  [c.47]

В любом варианте МГЭ результатом перехода от дифференциальных уравнений в частных производных к интегральным уравнениям в конечном счете является система уравнений, включающая значения переменных только на границе заданной области. Поэтому в отличие от МКЭ и МКР последующая дискретизация задачи проводится только на границе исследуемой области. Последнее обусловливает, во-первых, более высокую по сравнению с МКР и МКЭ точность решения, во-вторых, существенно меньший объем входных данных при реализации методов на ЭВМ.  [c.61]


Решения уравнений (5.30)... (5.32) дают разнообразные случаи распределения температуры в телах. При выводе указанных уравнений предполагалось, что коэффициенты Я, ср, а и ос постоянны. Учет зависимости этих коэффициентов от температуры приводит к нелинейным дифференциальным уравнениями, что чрезвычайно усложняет получение решения аналитическими методами. Для технических целей в ряде случаев точность решения оказывается достаточной, если выбирать средние значения коэффициентов Я, ср, а и а в диапазоне температур, характерном для рассматриваемого процесса. Судить о том, насколько удачно выбраны постоянные коэффициенты, можно на основании сравнения опытных и расчетных значений температур. Значения коэффициентов для расчетов температур при сварке сталей и других материалов рекомендуется выбирать по табл. 5.1.  [c.151]

В электромеханике планируемый эксперимент широко применяется для решения следующих задач моделирования ЭМП I) отыскание функциональных связей между показателями динамических процессов и постоянными параметрами для исключения дифференциальных уравнений из расчетных алгоритмов и повышения степени их однородности 2) замена сложных расчетных уравнений или их совокупностей простыми функциями 3) отыскание расчетных зависимостей для сложных процессов, не поддающихся математическому описанию с необходимой точностью и простотой.  [c.97]

Недостаток косвенных оценок динамических показателей заключается в большой погрешности, которая во многих случаях неудовлетворительна. Чтобы сохранить вычислительные преимущества алгебраических уравнений и одновременно повысить точность расчетов, можно воспользоваться методами планируемого эксперимента. Если в качестве объекта эксперимента рассматривать дифференциальные уравнения динамики, а в качестве факторов —их постоянные параметры, то, принимая динамические показатели за функции отклика, можно получить расчетные уравнения типа полиномов (4.27).  [c.98]

Волновые передачи, подобно планетарным, могут быть использованы не только как редукторы или мультипликаторы, но и как дифференциальные механизмы. Их целесообразно применять во всех механизмах, где требуются большие передаточные числа, и в устройствах, где требуется высокая кинематическая точность и герметичность (например, для передачи движения через герметическую стенку, в химической, космической, атомной и других отраслях техники).  [c.371]

Для доказательства правомерности такой замены покажем, ЧТО точечное отображение Т, построенное для системы дифференциальных уравнений (4.23), близко к точечному отображению сдвига Тт, построенному для уравнений (4.24), с точностью до малых величин порядка х . В самом деле, точечное отображение Т, порождаемое фазовыми траекториями уравнений (4.23), легко находится, если известно общее решение этих уравнений. В нашем случае общее решение уравнений (4.23) с точностью до малых величин порядка ]u, записывается в виде  [c.90]

Найдем теперь точечное отображение сдвига системы автономных дифференциальных уравнений (4.24). С точностью до малых членов порядка отображение Тт имеет вид  [c.90]

Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений мы будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения равновесия.  [c.435]


Предположим дополнительно, что гидростатическое давление (первый инвариант тензора напряжений) не влияет на зависимость между девиаторами напряжений и деформаций. Строго говоря, эта гипотеза неверна, но для многих металлов и сплавов она выполняется с достаточно большой точностью, введение же этой гипотезы позволяет намного упростить построение теории. Пусть, для простоты, отличны от нуля два компонента девиаторов. Тогда процесс нагружения в фиксированной точке тела будет изображаться кривой на плоскости а°, а°, процесс деформирования — кривой на плоскости е , Упомянутая выше зависимость связи напряжений с деформациями от истории нагружения означает, что деформированное состояние в данной точке тела зависит от всей кривой на плоскости а°, (т . Математически этот факт эквивалентен тому, что соотношения между напряжениями и деформациями в пластической области, вообще говоря, будут либо дифференциальными неинтегрируемыми, либо операторными зависимостями. Теории, использующие дифференциальные неинтегрируемые соотношения, известны как теории течения они, как правило, строятся с использованием введенного выше понятия поверхности текучести. Рассмотрим простейший класс операторных теорий, которые применяются только для специального вида процессов нагружения.  [c.267]

Более сложные и более точные процедуры могут быть построены по аналогии с тем, как строятся методы интегрирования обыкновенных дифференциальных уравнений высокого порядка точности.  [c.281]

Указания к решению задачи на ЭВМ. Дифференциальные уравнения движения машины (3) и уравнение для определения усилия 5 в шатуне АВ решаются на ЭВМ. Необходимые для интегрирования начальные условия по переменным ф , фг указаны в табл. 9, начальная угловая скорость берется равной оцг. Шаг печати At выбирается равным Д/ = т/24 = 0,01-И 10 V. На печать выводятся переменные /, ф1, фг, (02г. i-, S. Для упрощения программы и для ее индивидуализации значения длин и масс звеньев, момента Л1 , тригонометрических функций угла и т. п. вводятся как числовые константы. Значения этих констант предварительно вычисляются с точностью до трех значащих цифр.  [c.94]

Пфаффа. Согласно первому началу (2.2) — (2.3), 5Q равно сумме полного дифференциала dU и неполного дифференциала Ы и, следовательно, форма Пфаффа для Q не является полным дифференциалом какой-либо функции параметров состояния системы. Имеет ли эта дифференциальная форма интегрирующий множитель и что это физически означает, решается вторым началом термодинамики. Как следует из (2.1) — (2.3), уравнение первого начала позволяет определить внутреннюю энергию U[ai,. .., а Т) в состоянии [а , а , й Т) только с точностью до аддитивной постоянной U a°,. .., а° Т°), зависящей от выбора начального состояния (й ,. .., Г°). Для термодинамики этого вполне достаточно, так как в устанавливаемые ею соотношения входят лишь изменения энергии.  [c.39]

Это позволяет легко найти р. Действительно, так как АН=0, а Ар и А Г малы при дифференциальном эффекте Джоуля — Томсона, то с точностью до линейных членов  [c.184]

Действительно, поскольку АЯ = 0, а ДР и ЛГ малы при дифференциальном эффекте Джоуля—Томсона, то с точностью до  [c.126]

Если для аналитического описания теплообмена в условиях движения газа со скольжением использовать обычную систему дифференциальных уравнений, которая получена для плотного газа, а особенности разреженного газа учесть только в граничных условиях (температурным скачком и скоростью скольжения), то решение такой системы не может претендовать на высокую точность. Решения задачи о теплообмене пластины и шара в условиях скольжения  [c.400]

Применнтельно к аниаратостроению используются следующие методы изучения точности дифференциальный, моделирования и анализа размерностей, гармонического анализа, малых приращении. Рассмотрим основные особенности каждого метода.  [c.29]

С достаточной для практики степеиыо точности дифференциальное уравнение линии КЬ можно записать в следующем виде  [c.161]

Следовательно, дискретизация и алгебраизация уравнений в МКР сводит задачу анализа моделей на микроуровне к численному решению систем конечных (4.23) или обыкновенных дифференциальных (4.24) уравнений. Следует отметить, что точность аппроксимации растет с уменьшением величин шагов, однако при этом увеличивается порядок систем уравнений (4.23) или (4.24). Так, если окажется, что для достижения приемлемой точности рассматриваемую область R нужно делить вдоль каждой из координатных осей на 10 участков, то порядки систем уравнений (4.23) или (4.24) в одно-, дву- и трехмерных задачах составляют соответственно около 10 , 10 и 10 . Очевидно, что решение двумерных и особенно трехмерных задач требует значительных вычислительных ресурсов и тщательного отбора соответствующего математического обеспечения. Методы решения таких уравнений, применяемые в САПР, рассматриваются в следующей главе.  [c.162]

При решении краевых задач приближенные модели технических объектов можно строить на основе интегральных уравнений. При этом первый шаг на пути к ре-илению состоит в переходе от дифференциальных уравнений в частных производных к эквивалентным интегральным уравнениям. Во многих случаях, когда такой переход оказывается успешным, решение исходной задачи может быть получено с минимальными вычислительными затратами и высокой степенью точности. Кроме того, размерность исходной задачи понижается на 1, двухмерные задачи преобразуются в одномерные.  [c.60]

Аппроксимация Y(<) должна быть обоснована с учетом различных факторов функциональных свойств Y(0, необходимой точности решения, методов и средств решения уравнений динамики и т. п. В данном случае надо учитывать, что составляющие Y(0 являются кусочно-непрерывными функциями, допускающими разрывы первого рода ( 2). Кроме того, важным является то об-, стоятельство, что задачи подобного рода, возникающие в инженерной практике, решаются, как правило, с помощью ЭВМ. При этом, как известно, дифференциальные уравнения аппроксимируются разностными схемами.  [c.76]


По условию задачи требуется определить уравнение настильного участка траектории Л4о7И), непосредственно прилегающего к начальному положению точки /Ио- Так как этот участок траектории близок к горизонтальному, то, считая а величиной первого порядка малости, мы можем с точностью до слагаемых первого порядка малости включительно заменить в уравнении (< ) а на х (разность х — а является величиной второго порядка малости). Теперь дифференциальное уравнение (8) принимает вид  [c.57]

КОНЕЧНЫХ ЭЛЕМЕНТОВ МЕТОД - вариационный сеточный метод, являющийся,в свою очередь, проекционным методом при специальных координатных функциях. Область определения искомой функции в КЭМ разбивают на конечные элементы треугольники, четырехугольники, тетраэдры и т.п. Внутри каждого элемента задаются функции формы,произвольные функции с числом параметров, равным произведению чиспа узлов элемента на число условий в этих узлах. В качестве координатных функций применяют функции, тождественно равные нулю всюду, кроме одного конечного элемента, внутри которого они совпадают с функциями формы. В КЭМ решение дифференциальных уравнений сводится к минимизации функционала, вследствие чего этот метод является вариационным. С другой стороны, КЭМ, является сеточным методом, т.к. исследуемую область разбивают на подобласти, образуя сетку. Повышенная точность схем КЭМ обусловлена добавлением не только узлов, расположенных на границах элементов, но и внутренних узлов.  [c.30]

Если считать кривизны Xi= i(s) известными функциями s, то на уравнения Френе (1.114) можно смотреть как на систему дифференциальных уравнений для определения векторов р,-. Четыре параметра кривизны и кручения Xi вместе с длиной дуги s предст авляют полную систему внутренних геометрических параметров траектории 3(s). С точностью до положения этой кривой относительно репера е, в пространстве Ильюшина Re она однозначно определяется заданием параметров Xi(s) как функций длины дуги s. При заданных Xi(s) неопределенность кривой состоит в неопределенности ориентации начального положения репера р< относительно неподвижного репера й, .  [c.24]

Так как выпучивание о(5олочек и пластин носит ярко выраженный локальный характер, то каждую выпучину с достаточной для практики степенью точности рассматриваем как пологую оболочку, Поэтому основные дифференциальные уравнения выпучивания в малой окрестности точки бифуркации в скоростях имеют вид  [c.340]

Даже в тех случаях, когда сила в точности известна, закон сохранения может оказать существенную помощь при рещении задач о движении частиц. Для решения новых задач больщин-ство физиков следует раз навсегда установленному порядку , прежде всего один за другим применяются соответствующие законы сохранения, и только после этого, если в задаче ничего не упущено, переходят к решению дифференциальных уравне-йий, использованию вариационного принципа или метода возмущений, применению вычислительных машин и других средств, имеющихся в нашем распоряжении, или полагаются на интуицию. В гл. 7 и 9 мы используем таким путем законы сохранения энергии и импульса.  [c.149]

Как известно из дифференциальной геометрии, ироизводпая dn/dl вдоль луча равна N// , где N — еднии/ ный вектор главной нормали, а R радиус кривизны луча. Выражение же в правой стороне уравнения (67,6) есть, с точностью до множителя 1/с, производная от скорости звука по направлению главной нормали поэтому можно написать это уравнение в виде  [c.367]

Из соответствующей капоиической спстемы дифференциальных уравнений с точностью до членов первого порядка относительно е и а — о включительно имеем  [c.404]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]

В теории разностных схем доказывается теорема если разно-ч тная схема аппроксимирует дифференциальные уравнения и она устойчива, то при уменьшении шагов ее разностное решение сходится к решению дифференциальных уравнений. Обладание свойством сходимости является обязательным требованием, предъявляемым к разностной схеме при численном решении дифференциальной задачи. Если сходимость имеет место, то с помощью разностной схемы можно вычислить решение и с любой наперед заданной точностью, выбирая для этого шаг к достаточно малым.  [c.272]

Однако в связи с тем, что при обычном виде диф-ферепцкяльных уравнений приходится произ Водить слишком много вычислений для получения числовых значений подынтегральной функции, способ суммирования не находит применения даже в тех случаях, когда требуется построить (ВСЮ кривую свободноГ[ поверхности, т. е. даже при. малых интервалах переменной. Между тем для русел правильной формы можно придать дифференциальным уравнениям достаточно простой. вид, при котором способ суммирования можно с успехом применять, получая при этом высокую точность при малом шаге переменной величины.  [c.179]

В противоположность гидравлик теоретическая гидромеханика имела строго математический характер и при решении задач исходила из дифференциальных уравнений движения > идкости. Гидромеханика преследовала строгость постановки задачи, точность получаемых решений и стремилась обойтись без опытных данных. Однако не всегда оказывалось возможным получить решения уравнений гидромгханики, а в ряде случаев полученные решения, несмотря на свою строгость и общность, не давали достаточного совпадения с опытными данными. Гидромеханика часто не могла дать ответа на насущные задачи инженерной практики.  [c.8]



Смотреть страницы где упоминается термин Точность дифференциальные : [c.65]    [c.31]    [c.122]    [c.280]    [c.65]    [c.252]    [c.90]    [c.287]    [c.211]    [c.249]    [c.107]    [c.228]   
Краткий справочник машиностроителя (1966) -- [ c.502 ]



ПОИСК



Расчет точности шлифования, основанный на описании процессов обработки дифференциальными уравнениями



© 2025 Mash-xxl.info Реклама на сайте