Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алгебра

Рассмотрим некоторые общие положения векторной алгебры, которые най будут необходимы при кинематическом анализе пространственных механизмов.  [c.174]

Некоторые необходимые сведения по векторной алгебре даны в приложении 2 (с. 633).  [c.184]

Злементы алгебры логики. Синтез релейных схем  [c.596]

S 120. ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ. СИНТЕЗ РЕЛЕЙНЫХ СХЕМ 597  [c.597]

Нз таблицы 12 видно, что если х = О и дгз = О, то / = х -.х = 0-0 = 0 ссли х-[ = 0 и Xj = I, то / = -Xj = О -1 = 0 если X, = 1 и X, = О, то / = X,-х, = 1 -О = 0 если х = и Xj = 1, то / = А X, = 1 1 = 1, где все выражения согласуются с элементарной алгеброй.  [c.598]


Прежде чем продолжить обсуждение основных уравнений гидромеханики, необходимо напомнить основные положения векторной и тензорной алгебры. Этот раздел, а также разд. 1-3 — 1-5 посвящены основным математическим понятиям и представляют необходимое введение для последующего изложения основного материала.  [c.15]

Следуя иному подходу, во многих книгах по векторному и тензорному анализу (линейная алгебра) используют свойства преобразований, выраженные уравнениями (1-2.10) и (1-2.11), для определения упорядоченных систем чисел, называемых соответственно контравариантными и ковариантным векторами.  [c.19]

Градиент тензора представляет собой тензор третьего ранга. (В общем тензорном анализе или линейной алгебре скаляры рассматриваются как тензоры нулевого ранга, векторы — как тензоры первого ранга, тензоры — как тензоры второго ранга кроме того, изучаются тензоры более высокого ранга. Их компоненты имеют более чем два индекса и преобразуются при изменении системы координат согласно правилам, аналогичным (1-2.10), (1-2.11) и (1-3.23)—(1-3.25).)  [c.34]

ДАЛЬНЕЙШИЕ ПОЛЕЗНЫЕ СООТНОШЕНИЯ ТЕНЗОРНОЙ АЛГЕБРЫ  [c.77]

Дальнейшие полезные соотношения тензорной алгебры 79  [c.79]

Наиболее часто используемая в книге операция матричной алгебры представляет собой матричное умножение по правилу строка на столбец . Такие выражения, KaK imS j, соответствуют умножению строки на столбец при перемножении матриц Ац и если левый индекс интерпретировать как номер строки.  [c.81]

Другой полезной операцией матричной алгебры является обращение матрицы. Из тензорного тождества  [c.81]

Система управления производит в машине преобразование потоков информации, носителем которой являются различные сигналы, Сигнал СУ — это определенное значение физической величины (электрического тока, давления жидкости или газа, перемещения твердого тела и др,), которое дает информацию о положении или требуемом изменения положения рабочего органа или другого твердого тела машины. Во многих автоматах, автоматических устройствах входные и выходные сигналы СУ принимают только два значения ( есть—нет , движется — стоит ) и называются двоичными. Связь двоичных сигналов между собой, их преобразования могут быть описаны логическими высказывания м и. Системы управления, производящие обработку (преобразование) двоич 1ых сигналов по логическим высказываниям, называются логическими (или релейными) системами у п р а в л е и и я. Изучение и проектирование логических СУ производится на основе правил и законов алгебры логики,  [c.174]


На рис. 5.13, а, б показано обозначение логического элемента отрицания (инвертора) и таблица его состояний (рис. 5.13, в). Операция отрицания в алгебре логики называется инверсией и обозначается чертой над аргументом или функцией.  [c.175]

На рис. 5.15 показаны обозначения логического элемента сложения и таблица состояний / в зависимости от входных сигналов Х и Х2. В алгебре логики операцию сложения (логическая сумма) называют дизъюнкцией и обозначают +, V. U.  [c.176]

На рис. 5.16 приведены обозначения ЛЭ умножения и таблица состояний / в зависимости от аргументов (или входных сигналов) Xi, х,. В алгебре логики операция логического умножения называется конъюнкцией и обозначается X, , Л- На рис. 5.13, <2—5.16, а приведены обозначения, допускаемые в учебной литературе, а на рис. 5,13,6— 5.16, б — по ГОСТ 2.743—82.  [c.176]

Аксиомы алгебры логики  [c.176]

Алгебраические методы упрощения основаны на использовании аксиом и законов алгебры логики, в частности законов тавтологии  [c.180]

Автооператор 168 Агрегат машинный 5 Аксиомы алгебры логики 176 Анализ механизмов кинематический 81—82  [c.280]

Ранее основное внимание было уделено теории способов и алгоритмам построения линии пересечения поверхностей. Теперь рассмотрим некоторые вопросы алгебры, относящиеся к построению линии пересечения алгебраических поверхностей.  [c.132]

Основная теорема алгебры применительно к пересечению поверхностей читается так две алгебраические поверхности порядков п, т пересекаются по пространственной кривой порядка пт.  [c.132]

Псевдокод (частично формализованный язык) и САА-схемы (язык алгоритмических алгебр) — чисто текстовые, громоздкие и, главное, не наглядные описания. Р-схемы ориентированы на алгоритмы для станков с ЧПУ, а блок-схемы — на алгоритмы вычислительных задач.  [c.357]

Двоичный логический элемент — элемент, устройство или функциональная группа, реализующая функцию или систему функций двоичной алгебры логики, которые представляют собой элементарную, но электрически законченную схему, например элемент И, элемент ИЛИ, элемент НЕ, элемент задержки, триггер, дешифратор, сумматор и т. д.  [c.195]

В книге используется общепринятое векторное изложение материала и предполагается, что читатель знаком с основами векторной алгебры однако в примечаниях даются и некоторые необходимые справки. Нумерация формул в каждом из разделов книги сплошная и при ссылках на формулы данного раздела  [c.3]

Аналитически скорость и определяют по ее проекциям на какие-нибудь координатные оси. Найдем проекции вектора и на оси Охуг, жестко связанные с телом и движущиеся с ним (см. рис. 176) эти оси имеют то преимущество, что в mix координаты х, у, г точки М будут величинами постоянными. Так кан г =х, у=У I /" =2, то по известной формуле векторной алгебры  [c.151]

Операции над отношениями выполняются методами реляционного исчисления и реляционной алгебры.  [c.58]

Каждый из сигналов х , х. ,. .., х и /], [2, /п> принимающий значения О или 1, описывается двоичной переменной. Преобразование входа в выход, осуществляемое релейным устройством, оинсывается логическими функциями. Для анализа и синтеза этих устройств применяется алгебра логики, а точнее — булева алгебра, разработанная английским ученым Джорджем Булем в середине XIX века, необходимые основы которой мы здесь и изложим.  [c.600]

G. ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ. СИЛТЕЗ РЕЛЕЙНЫХ СХЕМ 5Q3  [c.603]

Как указывалось в 126, черкш над буквой обозначаем операцию не , т. е. контакт разомкнут. На оснопаиии приведенной формулы составляем структурную схему (рис. 29.6, б). Пользуясь правилами алгебры логики, можно выражение (А) значительно упростить. Действительно, представим выражение (А) в следующем виде  [c.610]

Кроме того, в разделе Сравнение начергательной геометрии с алгеброй " он отмечает Следует пожелать, чтобы обе эти науки изучались F e тe..." (с. 28).  [c.7]

Геометрическая модель — совокупность сведений, однозначно определяющих форму геометрического объекта. Геометрические модели могут быть представлены совокупностью уравнений линий и поверхностей, алгебрологическими соотношениями, графами, списками, таблицами, описаниями на специальных графических языках. Теоретической основой создания геометрических моделей являются аналитическая геометрия, теория множеств, дифференциальная геометрия, теория графов, алгебра логики.  [c.37]


Решение многих задач ме саники связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем в дальнейшем называть главным вектором этой системы сил. Как отмечалось в 3 (см. рис. 6), понятие о геометрической сумме сил не следует смешивать с понятием о равнодействуюш,ей для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сумму (главный вектор) можно вычислить для любой системы сил.  [c.18]

Если учесть, 4Tods= drl, где dr — вектор элементарного перемещения точки, и воспользоваться известным из векторной алгебры понятием о скалярном произведении двух векторов, то равенство (4J) можно представить в виде  [c.208]

При частном взаимном положении пересекающихся квадрик линия их пересечения может распадаться на две, три и четыре составляющие. Из алгебры известно, что при этом сумма порядков составляющих равна четырем, т. е. порядку нераспавшейся линии пересечения квадрик. Поэтому возможны следующие варианты распадений а)4 = 3+ 1, 6)4 = 2 + 2, в)4 = 2 + 1 + 1, г) 4 = 1 + 1 + 1 + 1.  [c.129]


Смотреть страницы где упоминается термин Алгебра : [c.89]    [c.597]    [c.599]    [c.81]    [c.303]    [c.152]    [c.164]    [c.28]    [c.103]    [c.36]    [c.36]    [c.124]    [c.172]   
Смотреть главы в:

Справочник металлиста Том 1 Изд.2  -> Алгебра

Справочник металлиста Том 1  -> Алгебра

Метрология, специальные общетехнические вопросы Кн 1  -> Алгебра

Введение в механику сплошных сред Часть 1  -> Алгебра

Первоначальный курс рациональной механики сплошных сред  -> Алгебра


Теоретическая механика (1987) -- [ c.294 ]

Справочник металлиста Том 1 Изд.2 (1965) -- [ c.62 , c.66 ]

Краткий справочник металлиста (0) -- [ c.35 , c.39 ]

Справочник металлиста Том 1 (1957) -- [ c.73 , c.77 ]

Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.433 ]

Технический справочник железнодорожника Том 1 (1951) -- [ c.91 ]

Математические методы классической механики (0) -- [ c.181 , c.284 , c.285 ]

Динамика твёрдого тела (2001) -- [ c.32 , c.37 ]

Особенности каустик и волновых фронтов (1996) -- [ c.86 ]

Ядра, частицы, ядерные реакторы (1989) -- [ c.135 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.130 ]



ПОИСК



2*-алгебра о-представленне

АксиОмат алгебры потоков излучения

Аксиома алгебра

Аксиомы алгебры логики

Алгебра Вейля

Алгебра Гекке

Алгебра Гильберта

Алгебра Йордана (йорданова)

Алгебра Клиффорда

Алгебра Снгала

Алгебра Якоби

Алгебра алгебра нормированная

Алгебра банахова

Алгебра банахова ЙВ-алгебры

Алгебра банахова исключительная

Алгебра банахова коммутативная действительная

Алгебра банахова ортогональные подпространства

Алгебра банахова порядок

Алгебра банахова простая

Алгебра банахова разложение единицы

Алгебра банахова самосопряженный элемент

Алгебра банахова собственный идеал

Алгебра банахова специальная

Алгебра векторная

Алгебра векторных полей

Алгебра г-чисел

Алгебра группы

Алгебра диффузных угловых коэффициентов

Алгебра е(4) и ее орбиты

Алгебра и решение уравнений (А. Ю. Ишлинский)

Алгебра измеримых множеств

Алгебра квазигильбертова

Алгебра квазигильбертова ассоциативная

Алгебра квазигильбертова дискретная

Алгебра квазигильбертова исключительная

Алгебра квазигильбертова конечная

Алгебра квазигильбертова неполное прямое произведение

Алгебра квазигильбертова непрерывная

Алгебра квазигильбертова обертывающая алгебра

Алгебра квазигильбертова однородная

Алгебра квазигильбертова специальная

Алгебра квазиунитариая

Алгебра квазнлокальная

Алгебра линейная

Алгебра логика

Алгебра логики, элементы

Алгебра матриц

Алгебра матричная

Алгебра первых интегралов

Алгебра пересечение

Алгебра полевая (algebre de champs

Алгебра полиадиков

Алгебра полиномиальная

Алгебра порожденная разбиением

Алгебра представление

Алгебра равномерно сверхтонкая (РСА)

Алгебра реляционная

Алгебра с инволюцией

Алгебра соотношений и пропорций

Алгебра спиновых операторов Паули

Алгебра сумма

Алгебра тензорная

Алгебра тернарных соотношений и интегрируемость

Алгебра фон Неймана

Алгебра фон Неймана полуконечная

Алгебра фон Неймана полуконечная стандартная

Алгебра фон Неймана порядок

Алгебра фон Неймана равномерная

Алгебра фон Неймана степень

Алгебра фон Неймана центр

Алгебра фон Неймана чисто бесконечная

Алгебра фон собственно бесконечная

Алгебра функций Гамильтона

Алгебра частиц и античастиц

Алгебра элементарная, формулы

Алгебра, включение

Алгебры Грассмана

Алгебры фон Неймана и квазиэквивалентность представлений

Аналитическая геометрия и линейная алгебра

Арифметика и алгебра

Базис Йордановой алгебре

Бесконечномерные градуированные алгебры Ли. связанные с вложениями ЗсГподалгебры в конечномерные алгебры Ли

Булева алгебра

Векторные поля, алгебры и группы, порождаемые системой

Векторные тождества в тензорной алгебре

Вещественные формы комплексных простых алгебр Ли

Вложения Зй-подалгебры в алгебры Ли

Высказывание неразложимое в алгебре

Высказывание неразложимое в алгебре г-чисел

Гильберта (гильбертова) алгебра

Гомоморфизм ДА-алгебр

Гомоморфизм ДА-алгебр лагранжев

Гомоморфизм формальной алгебры

Градуированные алгебры Ли и их классификация

Дальнейшие полезные соотношения тензорной алгебры

Действия иад комплексными числами вида а сооо Алгебра и анализ

Действия над комплексными числами вида а соа. Алгебра и анализ

Джейнса-Каммингса-Пауля модел алгебра операторов и оператор

Дискретная алгебра фон Неймана

Дифференцирование коммутативной алгебры

Доминирующее состояние иа С*-алгебре

Единица йордановой алгебры, разложени

Законы алгебры логики

Замолодчикова алгебра

Изоморфизм между простыми алгебрами

Изоморфизм между простыми алгебрами г-чисел н специальными алгебрами Иордана

Интегрирование нелинейных систем, связанных с бесконечномерными алгебрами Ли

Инфинитезимальный оператор группы. Алгебра Ли

Иорданова алгебра

Иорданова алгебра наблюдаемых в традиционной квантовой механике

Исключительная алгебра Иордана

Исключительная алгебра Иордана Снгала

Канонические антнперестановочные соотношения (КАС) С*-алгебра

Канонические перестановочные соотноше С*-алгебра

Квазилокальные алгебры и локально нормальные состояния

Квазиэквивалентиые представления алгебры

Квазнуннтарная алгебра

Класс когомологий алгебры

Классификация и симплектизация вихревой алгебры для плоскости

Клиффорда алгебра (algebre de Clifford)

Конечная алгебра фон Неймана

Корни квазиодиородной алгебры

Коцикл алгебры Ли двумерный

Краевая локальная алгебра

Краткие сведения из векторного анализа и линейной алгебры

Кратность и образующие локальной алгебры полуквазиоднородиой функции

Критерий Штёрмера чистых состояний на С*алгебре

Ли алгебра (algebre de Lie)

Ли алгебра (algebre de Lie) de Lie exceptionnels)

Локальная алгебра

Локальная алгебра и кратность особенности

Матричное представление операций векторной алгебры

Метод лучевой алгебры для определения облученности поверхностей

НЕКОТОРЫЕ ОБОЗНАЧЕНИЯ И КРАТКИЕ СВЕДЕНИЯ ОБ АЛГЕБРЕ ВЕКТОРНЫХ ПРОСТРАНСТВ

Некоторые определения и теоремы алгебры, геометрии и анализа

Некоторые сведения из векторной алгебры

Некоторые сведения из тензорной алгебры и анализа

Нелинейные динамические системы, связанные с конечномерными алгебрами Ли, и их интегрирование

Необходимые сведения из теории алгебр и групп Ли и их представлений

Непрерывная алгебра фон Неймана

Нормальный положительный функционал на алгебре

Нормированная ’-алгебра

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ВЕКТОРНОЙ И ТЕНЗОРНОЙ АЛГЕБРЫ И ВЕКТОРНОГО АНАЛИЗА Основы векторной алгебры

ОСНОВНЫЕ СВЕДЕНИЯ ПО МАТЕМАТИКЕ Аналитическая геометрия и линейная алгебра

ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИЗА Свободные векторы

Обертывающая алгебра фои Неймаиа

Обертывающие алгебры Ли исходной системы

Однородная алгебра фои Неймана

Оператор диагональный эквивалентный относительно алгебры

Операции иад виитами — комплексная векторная алгебра

Операции над винтами — комплексная векторная алгебра

Операции с векторами в тензорной алгебре

Основные законы алгебры логики

Основные законы алгебры —логики и их моделирование

Основные определения градуированных алгебр Ли

Основные положения алгебры логики

Основные положения векторной алгебры

Основы алгебры логики

Основы тензорной алгебры

ПРЕОБРАЗОВАНИЯ БЕК ЛУН ДА И СВЯЗАННЫЕ С НИМИ АЛГЕБРАИЧЕСКИЕ СТРУКТУРЫ АЛГЕБРА ПРОДОЛЖЕННЫХ СТРУКТУР Алексее, В. А. Андреев Введенше

Параметризация и упорядочение корней конечномерных комплексных простых алгебр Ли

Парциальных состояний расширение на С*алгебре

Подалгебра алгебры измеримых

Подалгебра алгебры измеримых множеств

Положительный квадратный корень на С*-алгебре

Потенциальная система на алгебре

Представления С*-алгебры квазиэквивалеитные

Представления простой С*-алгебры

Прил ожени е 2. Подпрограммы матричной алгебры

Приложение А. Матричная алгебра

Приложение Б. Сводка обозначений и краткий обзор алгебры полиадиков

Приложение. ЭЛЕМЕНТЫ ТЕНЗОРНОЙ АЛГЕБРЫ

Приложения. Тензорная алгебра и тензорный анализ

Применение алгебры логики при проектировании систем автоматического управления

Применение средств компьютерной алгебры

Принцип перенесения в комплексной векторной алгебре

Продолжение нильпотентного оператора, до представления алгебры Ли

Произведение бесконечное прямое С*-алгебр

Простые алгебры Ли конечного роста классификация и схемы Дынкина — Кокстера

Прямое произведение С неполное алгебр фон Неймана

Прямое произведение С*-алгебр

Разложение единицы йордановой алгебры

С м и р н о в, Д. Т. Свиридов. Алгебра Рака для кристаллографических групп и ее применение для расчета энергетических спектров ионов с незаполненной d-оболочкой в кристаллах

С-алгебра канонических перестановочных соотношений

Самосопряженный элемент алгебры с инволюцией

Свертка на нормированной *-алгебре)

Свойства полиномиальной алгебры открытого набора

Секторная алгебра

Сигала алгебра

Система дифференциальных уравнений и ее обертывающая алгебра

Системы, порождаемые локальной частью произвольной градуированной алгебры Ли

Системы, связанные с бесконечномерными алгебрами Ли

Скрученная теория Пикара—Лефшеца изолированных особенностей гладких функций и представления алгебр Гекке

Случай алгебр Ли общего положения

Солитоны векторного представления алгебры Аг

Соответствие между операциями в начертательной геометрии и исключением неизвестных в алгебре

Состояние минимальное на С*-алгебре

Состояние на С*-алгебре (или алгебре

Сравнение начертательной геометрии с алгеброй

Тензорная алгебра в косоугольном базисе

Теорема основная алгебр

Тернарные соотношения (relations алгебра (algebre)

Типы алгебр фон Неймана

Трехмерные подалгебры алгебр Ли

Уравнения Эйлера — Пуанкаре на алгебрах Ли

Формулировка модели и алгебра операторов Хаббарда

Формулы Тензорной алгебры

Формулы алгебры и тригонометрии

Функционал положительный линейный на С*-алгебре

Элементы алгебры логики. Синтез релейных схем

Элементы матричной алгебры

Элементы тензорной алгебры

Явная реализация конечномерных простых алгебр Ли для минимального вложения



© 2025 Mash-xxl.info Реклама на сайте