Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача трех тел общая

Несмотря на то, что нам известны некоторые частные решения ограниченной (и даже общей) задачи трех тел, общее ее решение до сих пор не найдено, так что уравнения движения этой задачи мы не умеем (при современном состоянии математики, по крайней мере) проинтегрировать до конца.  [c.774]

Механика тщательно собирает и изучает все те случаи, когда функциональные зависимости, выражающие силы, таковы, что дифференциальные уравнения (28) могут быть сведены к квадратурам и поэтому движения могут быть непосредственно изучены, Так, например, обстоит дело в таком важном случае, как движение материальной точки в поле тяготения какого-либо иного материального объекта. Однако уже в так называемой задаче трех тел, когда рассматривается система из трех материальных точек, движущихся под действием взаимного тяготения, дифференциальные уравнения вида (28) не решаются в общем виде и исследование движения становится значительно сложнее.  [c.64]


Вторая основная трудность состоит в том, что даже если бы мы точно знали силы взаимодействия между нуклонами, то все равно еще оставалась бы проблема математического решения квантовой задачи многих тел, причем вследствие громоздкости, в общем случае непреодолимой даже с помощью современной машинной техники, эта трудность носит не технический, а принципиальный характер. Известно, что уже неквантовая задача трех тел является сложной математической проблемой. При переходе от классической задачи многих тел к задаче о движении нуклонов в ядре необходимый здесь учет квантовых свойств приводит к колоссальным усложнениям. Действительно, в рантовой теории система из А нуклонов описы  [c.80]

Полагая число групп равным п, мы получим, написав уравнения движения п центров тяжести, Зл дифференциальных уравнений второго порядка, — по три для каждого центра тяжести. Эти уравнения, интегрирование которых составляет задачу п тел, допускают семь известных первых интегралов, которые мы укажем как приложения общих теорем о движении системы. Современные средства анализа не допускают выполнения интегрирования этих уравнений. Тем не менее в небесной механике оказалось возможным при помощи этих уравнений вычислить с достаточной степенью точности движение центров тяжести небесных тел благодаря тому, что массы всех тел солнечной системы очень малы по сравнению с массой Солнца. Так, масса Юпитера, наибольшая во всей системе, не составляет тысячной доли массы Солнца, Приведя число тел к трем, получим знаменитую задачу трех тел.  [c.349]

Приложение к задаче трех тел. Приложим общие теоремы к следующей задаче найти движение трех совершенно свободных материальных точек, взаимно притягивающихся по закону Ньютона.  [c.53]

В предыдущих главах мы пробовали применить два подхода к решению задачи трех тел. В 17.10 рассматривалось движение планеты в поле двух притягивающих центров. Если считать, что это движение происходит в неподвижной плоскости, проходящей через притягивающие центры, то можно, как мы видели, дать исчерпывающую классификацию траекторий. Более того, можно найти уравнения траекторий, выразив их через эллиптические функции. Трудности, с которыми мы сталкиваемся в этой сравнительно простой задаче, дают представление о сложности проблемы в общем случае. В 25.3 мы рассматривали вариации эллиптических элементов. При этом сначала изучалось движение одной планеты относительно Солнца, а затем рассматривались те возмущения, которые обусловлены наличием второй планеты. Второй этап в этих рассуждениях не носил характера самостоятельной задачи возмущенное движение рассматривалось как непрерывное видоизменение исходного эллиптического движения. Этот метод эффективен, поскольку массы планет весьма малы по сравнению с массой Солнца.  [c.562]


Принцип сохранения живой силы охватывает большой класс задач, к которым в частности принадлежит задача трех тел или более общая задача движения п тел, которые взаимно притягиваются.  [c.7]

А. Пуанкаре доказал еще более общую (в определенном смысле) теорему, которая состоит в том, что в задаче трех тел, кроме классических, не существует никаких других однозначных (алгебраических или трансцендентных) первых интегралов, зависящих от некоторого малого параметра, выражаемого через массы тел.  [c.109]

Рассматривая пространственные симметрические движения в задаче трех тел для общего закона взаимодействия, Ю. Д. Соколов установил, что, за исключением легко интегрируемого случая / (г) = Аг, единственно возможными видами таких движений являются указанные П. В. Воронцом вращения равнобедренного треугольника вокруг своей оси симметрии и оси, па-раллельной основанию, а также плоское движение с осью симметрии в соответствующей плоскости. Им исследованы плоские и пространственные томографические движения в задаче трех тел для общего закона взаимодействия. В частности, он доказал невозможность гомографического движения для степенного закона взаимодействия, отличного от закона Ньютона.  [c.111]

Ю. Д. Соколов изучил также траектории общего соударения в обобщенной задаче трех тел. Ему принадлежит первое исследование трансцендентного уравнения Эйлера — Лагранжа, связывающего отношения взаимных расстояний с отношением масс в обобщенном случае. Он доказал, что при стремлении времени к моменту общего соударения три тела, вообще говоря, стремятся образовать предельную конфигурацию, соответствующую известным частным случаям Эйлера—Лагранжа, а также указал исключения из общего правила. Соколов исследовал пространственное симметрическое движение и, в частности, траектории общего соударения, с коллинеарной (на оси вращения) предельной конфигурацией. Он изучил также траектории обобщенной задачи трех тел в случае неограниченного расхождения точек системы для плоского и пространственного движения в течение конечного интервала времени.  [c.114]

Перейдем к работам по теории устойчивости, не укладывающимся (частично или целиком) в рамки теории Ляпунова. Большой цикл работ по устойчивости принадлежит Н. Д. Моисееву. Многие из них посвящены задачам небесной механики и, кроме теории Ляпунова, используют методы общей качественной теории дифференциальных уравнений. Среди них выделяются работа Н. Д. Моисеева и серия статей о траекториях в ограничен- 131 ной задаче трех тел.  [c.131]

Еще более общий случай ограниченной задачи трех тел мы получим, если допустим, что Ai, и А , т ) движутся относительно их барицентра С не по окружностям, а по каким-то иным коническим сечениям.  [c.259]

Несомненно, что из указанных выше двух классических задач задача о движении тяжелого твердого тела около неподвижной точки является более простою. В самом деле, решение этой задачи приводится к интегрированию шести уравнений первого порядка, в то время как задача трех тел приводится к интегрированию девяти уравнений второго порядка. Естественно было начинать с попыток приложения общих методов аналитической теории дифференциальных уравнений, именно к задаче о движении тяжелого твердого тела кроме того, эта задача представляла еще тот интерес, что она, несомненно, привлекала к себе гораздо менее внимание исследователей, в то время как задаче трех тел (ввиду несомненного астрономического интереса ее) было посвящено огромное число исследований.  [c.23]

Нахождение частных решений и интегрируемых случаев гомографические решения в задаче трех тел и общие (а также многочисленные частные) случаи интегрируемости в динамике твердого тела. Задача о вращении тяжелого твердого тела вокруг неподвижной точки намного богаче интегрируемыми случаями, и она в этом смысле ближе к интегрируемой, чем задача трех тел. А это приводит к тому, что сложнее доказать ее неинтегрируемость.  [c.12]

Правда, в целом задаче трех тел повезло все же больше начиная с исследований А. Пуанкаре, эта задача и разнообразные ее варианты постоянно были первоочередным объектом приложения теоретических новинок. Так, например, созданный недавно С. Смейлом общий метод топологического анализа натуральных систем с симметрией был апробирован им на задаче трех тел, и только впоследствии аналогичные результаты были получены рядом авторов в динамике твердого тела с учетом специфики этой задачи.  [c.12]


Связанные с упомянутыми астрономическими задачами работы аналитического направления были посвящены общему рассмотрению и использованию главным образом ограниченной задачи трех тел в ее простейшем случае, когда движение двух конечных масс происходит по окружностям с общим центром в центре масс этих тел, рассматриваемых, разумеется, как материальные точки.  [c.341]

Сюда относятся, например, изыскание периодических решений вблизи известных лагранжевых решений ограниченной (круговой или эллиптической) и общей задачи трех тел, исследование периодических решений в задаче Фату, т. е. задачи о движении материальной точки в осесимметричном гравитационном поле, нахождение периодических решений некоторых специальных случаев задачи многих тел и, наконец, применение общих методов теории периодических решений Ляпунова — Пуанкаре к задачам о вращательном и о поступательно-вращательном движении взаимно притягивающихся твердых тел (не заменяемых материальными точками ).  [c.355]

Важность этих решений для теории была отмечена еш,е в начале теку-ш,его столетия Пуанкаре, который говорил, что периодические решения представляют собой единственную брешь, через которую можно надеяться проникнуть в неизведанную и загадочную область множества решений задачи трех тел, составляющих ее общий интеграл. С другой стороны, решения этого рода издавна использовались в небесной механике или для приближенного представления движений небесных тел или в качестве промежуточных их движений, рассматриваемых как первое приближение, уточняемое затем при помощи метода вариации произвольных постоянных или при помощи какого-либо другого процесса последовательных приближений.  [c.356]

Тем самым получается много периодических решений во всех задачах с двумя степенями свободы, где найдены инвариантные торы (например, в ограниченной круговой задаче трех тел, в задаче о замкнутых геодезических и т. п.). Существует даже гипотеза, что в гамильтоновых системах общего вида с компактным фазовым пространством замкнутые фазовые кривые образуют всюду плотное множество. Впрочем, если это и верно, замкнутость большинства из таких кривых не имеет существенного значения, так как их периоды чрезвычайно велики.  [c.391]

Проблема VII. В общей задаче трех тел определить топологическую природу многообразия состояний.  [c.326]

Здесь рассматриваются частные решения общей задачи трех тел, приводятся теоремы Брунса и Пуанкаре о несуществовании алгебраических и однозначных трансцендентных интегралов задачи трех тел, кроме десяти классических, и излагаются исследования Зундмана, дающая общее математическое решение задачи трех тел.  [c.6]

В части третьей Неограниченные задачи осталось две главы, причем глава VUI называется теперь Общая задача многих тел , в которой рассматриваются обобщенные задачи многих и трех материальных точек и выводятся условия существования частных решений общей задачи трех тел-точек.  [c.8]

Классический случай ограниченной задачи трех тел мы будем отмечать просто как частный случай более общей задачи.  [c.210]

Мы предпочитаем трактовать ограниченную задачу трех тел как частный случай общей задачи, а поэтому поставим сначала общую задачу трех материальных точек и выпишем соответствующие уравнения движения.  [c.210]

Эти уравнения, в которых координаты точки М н их производные определяются уравнениями (5.5) и поэтому должны рассматриваться как известные функции времени, и являются уравнениями общей (или обобщенной) ограниченной задачи трех тел (трех материальных точек). Отметим при этом, что масса пассивной точки М2 не входит в эти уравнения и может быть какой угодно. Просто эта масса не оказывает никакого действия на две другие массы. Можно считать, так же как это делается часто в математических классических ис-следова-ниях, что /П2 равна нулю, и в результате такого предположения мы получим те же самые уравнения (5.6). В астрономических задачах масса тг оказывается чрезвычайно малой по сравнению с массами то и т. Поэтому действие малой массы по закону Ньютона достаточно мало и этим малым действием в ряде случаев можно, оказывается, пренебречь, так что в задаче масса тг как бы не существует или как бы не действует. Таким образом, к ограниченной задаче можно подойти двумя путями или считая, что точка М2 имеет массу, равную нулю (ее часто так и называют нулевая масса ), или считая, как это делаем мы, что масса шг не равна нулю, но не действует на две другие, что и отмечается здесь в ее названии — пассивно действующая, или просто пассивная масса. Математическая задача, т. е. задача об исследовании и решении уравнений (5.6), не зависит от ее астрономической постановки, но, с одной стороны, странно говорить о движении нулевой массы, т. е. о движении чего-то, что в действительности не существует, а, с другой стороны, может показаться нереальным предположение о том, что конечная масса никак себя не обнаруживает, хотя ее движение может быть наблюдаемо (например, движение космической ракеты ). Все дело в том, что и в том, и в другом случае задача является приближенной, и систе.ма трех материальных точек, и в случае общей задачи и в случае ограниченной, представляет собой только абстрактную модель действительно существующих в природе систем небесных тел.  [c.214]

Уравнения общей ограниченной задачи трех тел (материальных точек) (5.11), (5.14) или (5.20) при произвольно заданных законах действующих сил не допускают никакого простого алгебраического или даже выражаемого в квадратурах элементарных функций, первого интеграла.  [c.224]

В общей ограниченной задаче трех тел (материальных точек) уравнения движения пассивно действующей точки Мг могут быть преобразованы к виду (5.20), и эти уравнения, как было показано в предыдущем параграфе, могут допускать при из-  [c.240]


Задача, в которой определяется траектория движения тела (ракеты) с учетом притяжения Солнца НЛП одной из других планет, называется задачей трех тел. Она настолько сложна, что в общем виде, в форме, пригодной для практического применения, не рещена до настоящего времени. Влияние возмущающей силы каждой из других планет на движение рассматриваемого тела (ракеты) учитывается отдельно с помощью бесконечных сходящихся рядов и связано с весьма трудоемкими вычислениями. В этих вычислениях огромную помощь оказали быстродействующие электронные вычислительные машины. Они позволяют вычислять сотни н тысячи траекторий возмущенного движения тела (ракеты) н выбирать из них оптимальные, т. е. те, полет по которым требует наименьших затрат топлива, минимального времени и т. д. В частности, действие возмущающих сил приводит к тому, что элементы орбиты оказываются непостоянными и медленно изменяются со временем.  [c.121]

Для небесной механики и космодинамики наиболее важна так называемая ограниченная задача трех тел. Она состоит в изучении движения точки малой массы под действием притяжения двух конечных масс в предположении, что точка малой массы не влияет на движение точек конечных масс. Тем самым в ограниченной задаче трех тел точки конечных масс движутся по орбитам, определяемым задачей двух тел, так что движение этих двух точек известно. Таким образом, анализ ограниченной задачи трех тол сводится к исследованию движения только одной точки малой массы. Конечно, эта задача значительно проще общей (неограниченной) задачи трех тел. Но и она не интегрируется (точнее, не проинтегрирована) в квадратурах.  [c.244]

В случае либрационного движения период возмущенного движения (которое также является периодическим) в общем случае отличается от периода невозмущенного движения, так что х t а + Ь) — х (/ а) не может все время оставаться малым, и, стало быть, и ф (г а + 6) — ф (< а) не будет малым. В других, менее простых случаях (например, в ограниченной задаче трех тел, см. гл. XXVIII) лишь очень немногие характеристики оказываются устойчивыми по Ляпунову.  [c.478]

Периодические орбиты. Как правило, уравнения движения динамической системы при произвольных начальных условиях не удается проинтегрировать до конца. Так обстоит дело, в частности, и для задачи трех тел. Мы видели ( 17.10), что даже классификация возможных типов траекторий в общем случае встречает больпше трудности. Однако иногда мы в состоянии найти периодические орбиты или по крайней мере доказать их существование. Пуанкаре в своей классической работе о задаче трех тел придавал особое значение отысканию периодических решений и считал это отправным пунктом для решения общей задачи о классификации и интегрировании ). Траектории могут быть периодическими как в абсолютном смысле (по отношению к неподвижным осям), так и в относительном смысле (по отношению к осям, движущимся определенным образом). Например, в ограниченной задаче трех тел мы говорим о периодических траекториях частиц относительно вращающихся осей.  [c.602]

Еще в 1878 г. Ф. А. Слудский высказал без доказательства теорему о том, что необходимым условием общего соударения свободных материальных точек, взаимно притягивающихся по закону Ньютона, является аннулирование всех постоянных интегралов площадей в движении системы относительно ее центра инерции. Подобную мысль высказал и К. Вейерштрасс Он показал, что при отличной от нуля нижней границе минимума взаимных расстояний точек системы координаты этих точек являются голоморфными функциями времени в полосе комплексной i-плоскости, ограниченной двумя симметричными относительно действительной оси прямыми. Исследуя вопрос о существовании соответствующих начальных условий движения, он пришел к заключению, что по крайней мере для задачи трех тел такие начальные условия не только существуют, но и представляют собой общий случай, в то время как парное и, тем более, общее соударение точек в конечный момент может произойти только при особых условиях. Вейерштрасс без доказательства также заметил, что координаты точек системы разлагаются в окрестности момента парного соударения t = в ряды по целым положи-J тельным степеням (fj — i) и зависят от бге — 2 произвольных постоянных. Эту теорему доказал П. Пенлеве . Он показал также, что если движение в классической задаче п тел, регулярное до момента ti, в этот момент нарушает регулярность, то минимум взаимных расстояний точек при t-у ti стремится к нулю. Если п = 3, то единственной особенностью движения может быть только парное или общее соударение тел в момент Если и 3, могут быть и такие особенности, когда некоторые из взаимных расстояний, не стремясь ни к каким определенным пределам при t ti, осциллируют в каких угодно границах. П. Пенлеве установил, что начальные условия движения, соответствующие парному соударению, должны удовлетворять определенным аналитическим соотношениям, однозначным относительно координат и алгебраическим относительно скоростей, если по крайней мере массы трех точек отличны от нуля. Найти эти условия удалось Т. Леви-Чивита и Г. Бискончини . Однако эти условия выражаются очень сложными рядами и могут быть использованы непосредственно только в случае, когда соударение происходит через весьма малый промежуток времени после начального момента.  [c.112]

Исследуя случай общего соударения в задаче трех тел, Сундман доказал теорему Слудского—Вейерштрасса, а также показал, что при приближении к моменту общего соударения конфигурация, образованная точками, приближается к одной из двух конфигураций, характеризующих решения Лагранжа.  [c.113]

Для регуляризации ограниченной задачи трех тел Г. Армеллини предложил преобразование переменной более простое, чем Сундман. В случае общей классической задачи п тел он доказал, что при наличии только парных соударений между точками с интервалами, имеющими отличную от нуля нижнюю границу, координаты точек и время являются аналитическими функциями некоторого аргумента вдоль действительной оси. Б. П. Ермаков показал, что при комплексных значениях времени теорема Слудского— Вейерштрасса не правомерна.  [c.113]

Изучая условия общего соударения в задаче п тел, Ж. Шази пришел к заключению, что при приближении к моменту удара отношения взаимных расстояний стремятся к определенным пределам, зависящим от отношений масс, и что нри этом существуют предельные конфигурации системы. Заключение Шази основывается на постулате, который ему удалось доказать только для п — 3 и п = 4. Для задачи п тел Шази доказал теорему Слудского — Вейерштрасса, а также исследовал параболические траектории этой задачи. Ж. Шази 2 принадлежат обобщения метода Сундмана на случай взаимного притяжения обратно пропорционально кубам расстояний и установление классификации движения при неограниченном возрастании времени в классической задаче трех тел.  [c.114]

Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]


При 71 = 2 и о О (ограниченная задача трех тел) подобное утверждение не доказано. Более того, известна гипотеза Шази об интегрируемости задачи трех тел при положительных значениях полной энергии [5]. Эта гипотеза связана с более общей концепцией в задаче рассеяния частиц с некомпактным пространством положений данные на бесконечности (скажем, импульсы частиц) являются кандидатами на роль первых интегралов. Однако реализация этой идеи сталкивается с рядом затруднений принципиального характера, связанных с областью определения и гладкостью интегралов рассеяния . Одна из таких трудностей — возможность захвата в задаче многих взаимодействующих частиц.  [c.147]

Предполагая начальные условия общей задачи трех тел совершенно произвольными, но считая произвольные постоянные интегралов площадей не равными одновременно нулю, Зундман нашел регуляризирую-щее преобразование и ь результате получил безупречное математически решение задачи трех тел в виде рядов, расположенных по степеням некоторой вспомогательной переменной и абсолютно сходящихся при всех значениях времени, каковы бы ни были соударения между какими-либо двумя из трех тел.  [c.333]

Б Ленинграде была разработана теория осуществимости движения (Н. А. Артемьев), близкая к теории устойчивости при постоянно действующих возмущениях, а поэтому имеющая более важное значение для небесной механики, чем первоначальная теория Ляпунова. В Киеве были удачно продолжены работы Зундмана (Ю. Д. Соколов) по общей теории задачи трех тел, обладающих любыми массами, и получены новые интересные результаты. В Томске велись работы по усовершенствованию метода Альфана для вычисления вековых возмущений (Н. Н. Горячев), что привело к новому, в сущности, методу Альфана — Горячева, применяемому, кстати сказать, в настоящее время в США в астродинамике. В Харькове разрабатывалась теория движения малых планет юпитеровой группы (А. И. Раз дольский). В Одессе велись интересные исследования движений тел с переменными массами (К. Н. Савченко) и т. д.  [c.347]

Можно даже утверждать, что подобно тому, как понимание глубоких идей А. Пуанкаре о неинтегрируемости динамических систем стало возможным благодаря анализу задачи трех тел, результаты и методы Софуса Ли вошли в общую математическую культуру вследствие их приложения к динамике волчков, дающих примеры механической реализации наиболее естественных групп и алгебр Ли. Кроме того, в отличие от небесной механики и теории колебаний динамика твердого тела, с одной стороны, содержит ряд нетривиальных интегрируемых случаев, а с другой стороны, в силу компактности конфигурационного пространства наиболее предпочтительна для анализа хаотических движений.  [c.12]

Смейл на примере плоской задачи трех тел предложил общий метод исследования перестроек интегральных многообразий при переходе через бифуркационные кривые. Применительно к уравнениям Эйлера-Пуассона (линейный потенциал) перестройки бифуркационньк кривых качественно изучены С. Б. Каток, Я. В. Татариновым и Р. П. Кузьминой [84, 164, 109].  [c.144]


Смотреть страницы где упоминается термин Задача трех тел общая : [c.205]    [c.496]    [c.94]    [c.198]    [c.23]    [c.333]    [c.364]    [c.8]   
Теоретическая механика (1990) -- [ c.205 ]

Теоретическая механика (1999) -- [ c.244 ]



ПОИСК



Дифференциальные уравнения общей задачи трех тел

Задача общая (задача

Задача трех тел

Общая задача в трех измерениях для сосуда, находящегося в данном движении

Общая постановка задачи трех тел

Общая система уравнений для решения задач по лучистому теплообмену в замкнутой системе из трех серых тел при

Общий случай задачи трех тел

Общий случай ограниченной задачи трех тел

Поиск частных, первых и общих интегралов заданной аналитической структуры обыкновенных дифференциальных уравнений на ЭВМ. Приложение к ограниченной задаче трех тел



© 2025 Mash-xxl.info Реклама на сайте