Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общий случай ограниченной задачи трех тел

Еще более общий случай ограниченной задачи трех тел мы получим, если допустим, что Ai, и А , т ) движутся относительно их барицентра С не по окружностям, а по каким-то иным коническим сечениям.  [c.259]

Общий случай ограниченной задачи трех тел  [c.548]

Классический случай ограниченной задачи трех тел мы будем отмечать просто как частный случай более общей задачи.  [c.210]


Мы предпочитаем трактовать ограниченную задачу трех тел как частный случай общей задачи, а поэтому поставим сначала общую задачу трех материальных точек и выпишем соответствующие уравнения движения.  [c.210]

Ограниченная задача трех тел — это задача о движении материальной точки Р с нулевой массой, притягиваемой по закону Ньютона двумя другими материальными точками Pq и Pi, имеющими отличные от нуля массы 1 — (х и ц и движущимися по кеплеровским орбитам вокруг общего центра масс. Ограниченная круговая задача трех тел является частным случаем этой задачи.  [c.548]

Можно прийти к весьма простому для рассмотрения предельному случаю названной задачи, если исходить вместо общей задачи трех тел из так называемой ограниченной задачи трех тел. Последняя есть частный случай плоской задачи трех тел, в которой масса точки Р3 равна пулю, а точки Рх, Р2 описывают окружности . Чтобы получить дифференциальные уравнения движения для точки Р3, введем в заданной плоскости вращающуюся систему осей с началом в центре инерции точек Р1 и Р2, так что точки Рх и Р2 относительно повой системы координат будут неподвижными. Без ограничения общности можно принять, что угловая скорость и = 1 в силу уравнений (12 5) для прямоугольных координат Х2к-1, Х2к точки Рк к = 1, 2, 3) во вращающейся системе координат получаются следующие дифференциальные уравнения  [c.168]

Таким образом, общая задача трех тел, описываемая девятью дифференциальными уравнениями второго порядка, сводится к трем дифференциальным уравнениям второго порядка, т. е. порядок системы понижается от 18 до 6. Если задачу ограничить еще больше, потребовав, чтобы третье тело двигалось в плоскости орбит двух массивных тел, то останется только два уравнения второго порядка, так что система будет иметь четвертый порядок. Такой частный случай называется плоской ограниченной круговой задачей трех тел. Из приведенных выше рассуждений становится понятным, почему пространственной и плоской ограниченной круговой задаче трех тел было посвящено большое число аналитических и численных исследований, хотя при такой постановке задачи мы волей-неволей лишаем себя воз.можности использовать десять известных интегралов движения. Однако при этом можно найти новый интеграл (впервые полученный Якоби), который будет полезен при исследовании поведения малой частицы.  [c.146]

Пользуясь общими формулами 3, можно задачу решить и в самом общем случае, если бы для того представилась надобность. Заметим, что указанная метода может быть распространена и на случай задачи в трех измерениях, так как задача о деформации тела, ограниченного двумя концентрическими сферами, решена в самом общем виде. Считая, что по поверхности внутренней сферы никаких усилий нет, а по наружной поверхности усилия такие же, как и в том случае, когда нет внутри малой сферической пустоты, можно задачу решить в самом общем виде.  [c.117]


Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]

Наряду с общей задачей , в которой все массы предполагаются положительными, рассматриваются и предельные случаи, когда в уравнениях (1) некоторые из та полагаются равными нулю. На физическом языке это означает, что мы пренебрегаем влиянием соответствующих тел на движение остальных. В этой ситуации говорят обычно об ограниченной задаче . Особенно известной является задача о движении тела пулевой массы ( планетоида или астероида ) в поле тяготения, создаваемом двумя телами, обращающимися по круговым орбитам вокруг общего центра масс, причем все три тела все время находятся в одной и той ке плоскости. Собственно говоря, Пуанкаре именно этот случай назвал ограниченной задачей трех тел , но теперь он часто именуется более пространно — ограпичсипой плоской круговой задачей , в отличие от ограниченной эллиптической задачи и прочих. Если приравнять нулю все массы, кроме одной, то мы получим идеальную планетную систему , в которой тела нулевой массы ( планеты ) обращаются около одного тела ( Солнца ) по чисто кеплеровским орбитам, не оказывая друг на друга никакого влияния. В классической небесномеханической теории возмущений этот случай выступает в качестве нулевого при-бли кения.  [c.19]

В предельном случае р = О, 5 = О получаются решения Хилла, которые были выведены в предыдущем параграфе, где рассмотрение рекуррентных формул для коэффициентов было более простым, потому что вместо I входило 21 и отсутствовала особенность при I = 1. При ( = ОиО<р<1 получаем ограниченную задачу трех тел, в которой масса Лупы равна пулю. Для этого случая периодическое решение было найдено Брауном [2] по методу Хилла. Полученное памп общее решение было найдено Мультопом другим способом, а имеппо, с помощью метода малого параметра Пуанкаре. Этому методу посвящен следующий параграф.  [c.185]

Закончим этот параграф применением наших результатов к ла-гранжевым решениям ограниченной задачи трех тел. Эти решения, которые мы изучали применительно к общей задаче трех тел, сохраняют свое значение также и для ограниченного случая. Мы предполагаем, что Pi, Рг — частицы масс /i, 1 — соответственно, и рассматриваем движение точки Рз нулевой массы во вращающейся системе координат, в которой Pi, Р2 неподвижны. При этих условиях уравнения для координат (xi, Х2) точки Р3 имеют гамильтонов вид  [c.330]

При некоторых специальных начальных условиях можно получить очень простое решение задачи трех тел (случай Лагранжа), представляющее большой интерес для астрономии. Частным случаем задачи трех тел является так называемая ограниченная задача трех тел, в которой два тела конечной массы движутся вокруг центра инерции по эллиптическим орбитам, а третье тело имеет бесконечно малую массу. Для ограниченной задачи удалось построить разнообразные классы периодических движений (периодические орбиты Пуанкаре, Шварцшильда и др.). Для общего случая задачи трех тел подробно изучены предельные свойства движения при -> -ь оо и  [c.6]


Еще в 1878 г. Ф. А. Слудский высказал без доказательства теорему о том, что необходимым условием общего соударения свободных материальных точек, взаимно притягивающихся по закону Ньютона, является аннулирование всех постоянных интегралов площадей в движении системы относительно ее центра инерции. Подобную мысль высказал и К. Вейерштрасс Он показал, что при отличной от нуля нижней границе минимума взаимных расстояний точек системы координаты этих точек являются голоморфными функциями времени в полосе комплексной i-плоскости, ограниченной двумя симметричными относительно действительной оси прямыми. Исследуя вопрос о существовании соответствующих начальных условий движения, он пришел к заключению, что по крайней мере для задачи трех тел такие начальные условия не только существуют, но и представляют собой общий случай, в то время как парное и, тем более, общее соударение точек в конечный момент может произойти только при особых условиях. Вейерштрасс без доказательства также заметил, что координаты точек системы разлагаются в окрестности момента парного соударения t = в ряды по целым положи-J тельным степеням (fj — i) и зависят от бге — 2 произвольных постоянных. Эту теорему доказал П. Пенлеве . Он показал также, что если движение в классической задаче п тел, регулярное до момента ti, в этот момент нарушает регулярность, то минимум взаимных расстояний точек при t-у ti стремится к нулю. Если п = 3, то единственной особенностью движения может быть только парное или общее соударение тел в момент Если и 3, могут быть и такие особенности, когда некоторые из взаимных расстояний, не стремясь ни к каким определенным пределам при t ti, осциллируют в каких угодно границах. П. Пенлеве установил, что начальные условия движения, соответствующие парному соударению, должны удовлетворять определенным аналитическим соотношениям, однозначным относительно координат и алгебраическим относительно скоростей, если по крайней мере массы трех точек отличны от нуля. Найти эти условия удалось Т. Леви-Чивита и Г. Бискончини . Однако эти условия выражаются очень сложными рядами и могут быть использованы непосредственно только в случае, когда соударение происходит через весьма малый промежуток времени после начального момента.  [c.112]

Вводные замечания. Задача трех или большего числа тел считается по справедливости одной из самых знаменитых проблем в математике. Тем не менее, до недавнего времени весь интерес в этой проблеме был направлен на формальную сторону вопроса и в частности на формальное решение посредством рядов. Пуанкаре был первым, получившим блестящие качественные результаты, касающиеся в особенности специального предельного случая так называемой ограниченной проблемы трех тел , рассмотренной впервые Хиллом. Что касается общей проблемы, то главные результаты, полученные Пуанкаре, следующие во-первых, он установил существование различных типов периодических движений методом аналитического продолжения во-вторых, он показал, что в силу самой структуры дифференциальных уравнений проблемы тригономстричсскис ряды могут быть полезными, и, наконец, в-третьих, он указал на пригодность этих рядов, как асимптотических. Все эти результаты остаются справедливыми не только для проблемы трех тел, но и для всякой гамильтоновой системы. К несчастью, в его исследованиях всегда имеется вспомогательный параметр //, причем при /X = О система будет специального интегрируемого типа. Таким образом, возникающие трудности (по крайней мере, отчасти) более зависят от особой природы интегрируемого предельного случая (когда два из трех тел имеют массу 0), чем присущи самой проблеме.  [c.259]

Однако один частный, или, лучше сказать, специальный случай ограниченной круговой задачи трех тел оказывается вполпе интегрируемым, и общее решение задачи в этом специальном случае может быть написано в квадратурах. Мы имеем в виду так называемую задачу двух неподвижных центров, которая была проинтегрирована еще Эйлером и с тех пор неизменно привлекала к себе внимание многих механиков и математиков. Задача двух неподвижных центров заключается в определении движения материальной точки нулевой массы , притягиваемой двумя конечными неподвижными точечными массами, но не оказывающей на них никакого влияния. Поэтому эту задачу можно рассматривать как специальный случай ограниченной задачи, в котором только две конечные массы остаются неподвижными, не только в относительной, но и в неизменной системе координат.  [c.774]


Смотреть страницы где упоминается термин Общий случай ограниченной задачи трех тел : [c.501]    [c.364]    [c.232]    [c.517]    [c.253]    [c.138]   
Смотреть главы в:

Справочное руководство по небесной механике и астродинамике Изд.2  -> Общий случай ограниченной задачи трех тел



ПОИСК



Задача 3 тел ограниченная

Задача общая (задача

Задача трех тел

Задача трех тел общая

Общий случай

Общий случай задачи трех тел

Ограничения

Случай трех сил



© 2025 Mash-xxl.info Реклама на сайте