Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения общей задачи трех тел

Дифференциальные уравнения общей задачи трех тел  [c.730]

Так как, кроме классических первых интегралов, нам до сих пор не известны никакие другие интегралы, то дифференциальные уравнения общей задачи трех тел не могут быть проинтегрированы полностью и общее решение этой задачи мы получить (по крайней мере в настоящее время) не можем.  [c.738]

Можно прийти к весьма простому для рассмотрения предельному случаю названной задачи, если исходить вместо общей задачи трех тел из так называемой ограниченной задачи трех тел. Последняя есть частный случай плоской задачи трех тел, в которой масса точки Р3 равна пулю, а точки Рх, Р2 описывают окружности . Чтобы получить дифференциальные уравнения движения для точки Р3, введем в заданной плоскости вращающуюся систему осей с началом в центре инерции точек Р1 и Р2, так что точки Рх и Р2 относительно повой системы координат будут неподвижными. Без ограничения общности можно принять, что угловая скорость и = 1 в силу уравнений (12 5) для прямоугольных координат Х2к-1, Х2к точки Рк к = 1, 2, 3) во вращающейся системе координат получаются следующие дифференциальные уравнения  [c.168]


Таким образом, общая задача трех тел, описываемая девятью дифференциальными уравнениями второго порядка, сводится к трем дифференциальным уравнениям второго порядка, т. е. порядок системы понижается от 18 до 6. Если задачу ограничить еще больше, потребовав, чтобы третье тело двигалось в плоскости орбит двух массивных тел, то останется только два уравнения второго порядка, так что система будет иметь четвертый порядок. Такой частный случай называется плоской ограниченной круговой задачей трех тел. Из приведенных выше рассуждений становится понятным, почему пространственной и плоской ограниченной круговой задаче трех тел было посвящено большое число аналитических и численных исследований, хотя при такой постановке задачи мы волей-неволей лишаем себя воз.можности использовать десять известных интегралов движения. Однако при этом можно найти новый интеграл (впервые полученный Якоби), который будет полезен при исследовании поведения малой частицы.  [c.146]

Механика тщательно собирает и изучает все те случаи, когда функциональные зависимости, выражающие силы, таковы, что дифференциальные уравнения (28) могут быть сведены к квадратурам и поэтому движения могут быть непосредственно изучены, Так, например, обстоит дело в таком важном случае, как движение материальной точки в поле тяготения какого-либо иного материального объекта. Однако уже в так называемой задаче трех тел, когда рассматривается система из трех материальных точек, движущихся под действием взаимного тяготения, дифференциальные уравнения вида (28) не решаются в общем виде и исследование движения становится значительно сложнее.  [c.64]

Для нахождения движения механической системы по заданным силам и начальным условиям для каждой точки системы нужно проинтегрировать, гь следовательно, систему дифференциальных уравнений. Эту задачу не удается точно решить в общем случае даже для одной точки. Она исключительно трудна в случае двух материальных точек, которые движутся только под действием сил взаимодействия по закону всемирного притяжения (задача о двух телах) и совершенно неразрешима в случае трех взаимодействующих точек (задача о трех телах).  [c.255]

Полагая число групп равным п, мы получим, написав уравнения движения п центров тяжести, Зл дифференциальных уравнений второго порядка, — по три для каждого центра тяжести. Эти уравнения, интегрирование которых составляет задачу п тел, допускают семь известных первых интегралов, которые мы укажем как приложения общих теорем о движении системы. Современные средства анализа не допускают выполнения интегрирования этих уравнений. Тем не менее в небесной механике оказалось возможным при помощи этих уравнений вычислить с достаточной степенью точности движение центров тяжести небесных тел благодаря тому, что массы всех тел солнечной системы очень малы по сравнению с массой Солнца. Так, масса Юпитера, наибольшая во всей системе, не составляет тысячной доли массы Солнца, Приведя число тел к трем, получим знаменитую задачу трех тел.  [c.349]


Перейдем к работам по теории устойчивости, не укладывающимся (частично или целиком) в рамки теории Ляпунова. Большой цикл работ по устойчивости принадлежит Н. Д. Моисееву. Многие из них посвящены задачам небесной механики и, кроме теории Ляпунова, используют методы общей качественной теории дифференциальных уравнений. Среди них выделяются работа Н. Д. Моисеева и серия статей о траекториях в ограничен- 131 ной задаче трех тел.  [c.131]

Теорема о кинетическом моменте в общей форме (5) может быть с успехом использована в ряде задач, которые не решаются с помощью других форм этой теоремы. Пример задачи такого рода — задача о качении однородного цилиндра по наклонной плоскости (рис, 2). Обычно эта задача решается с помощью трех дифференциальных уравнений плоского движения твердого тела. Но при качении без скольжения цилиндр имеет одну степень свободы и для определения его движения вовсе не обязательно составлять три дифференциальных уравнения. Применяя в данной задаче теорему о кинетическом моменте в форме (5), выберем за центр О точку, совпадающую в любой момент времени с мгновенным центром скоростей цилиндра, т. е. точку касания его с плоскостью . Эта точка движется вдоль плоскости со скоростью г о, равной скорости центра масс С. Следовательно, при таком выборе  [c.7]

Несомненно, что из указанных выше двух классических задач задача о движении тяжелого твердого тела около неподвижной точки является более простою. В самом деле, решение этой задачи приводится к интегрированию шести уравнений первого порядка, в то время как задача трех тел приводится к интегрированию девяти уравнений второго порядка. Естественно было начинать с попыток приложения общих методов аналитической теории дифференциальных уравнений, именно к задаче о движении тяжелого твердого тела кроме того, эта задача представляла еще тот интерес, что она, несомненно, привлекала к себе гораздо менее внимание исследователей, в то время как задаче трех тел (ввиду несомненного астрономического интереса ее) было посвящено огромное число исследований.  [c.23]

Изучение этого плоского движения составляет несколько более простую задачу, называемую плоской задачей трех тел, дифференциальные уравнения которой получаются из дифференциальных уравнений общей (пространственной) задачи трех тел при условии, что во все время движения положение плоскости треугольника, образованного тремя точками, Мо, Мь Мг, ие изменяется, т. е. что мы имеем  [c.745]

Интегрирование системы нелинейных дифференциальных уравнений (14) и (15) при общих начальных условиях (16) — задача чрезвычайно трудная. Она в общем случае начальных условий не решена даже тогда, когда внешними силами являются только сила тяжести самого тела и реакция закрепленной точки. Для тяжелого твердого тела, вращающегося вокруг неподвижной точки, в трех случаях была указана система первых интегралов дифференциальных уравнений, из которых неизвестные углы Эйлера в зависимости от времени определяются в квадратурах, т. е. путем вычисления интегралов. Эти частные случаи называют случаями интегрируемости уравнений Эйлера.  [c.481]

О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]


Пример 2. Задача о трех телах. Эта задача состоит в определении движения трех тел, действующих друг на друга ньютонианскими силами. В окончательном виде задача эта не решена, потому что дифференциальные уравнения движения не могли быть проинтегрированы в общем виде. Есть несколько частных случаев решения задачи о трех телах из них приведем здесь частный случай, разобранный Лапласом.  [c.496]

Лагранж (1736—1813) впервые показал, что при определенных начальных условиях можно довести до конца точное интегрирование дифференциальных уравнений движения в общей задаче трех тел. В одном из этих случаев три массы образуют постоянно вершины равносто-  [c.97]

В 10 гл. V мы иашлн, что дифференциальные уравнения задачи трех тел могут быть сведены к четырем степеням свободы. Поэтому элементы Ь, Г, V, Г, I, g, V, g могут быть выражены прн помощи тригонометрических рядов с четырьмя аргумента.ми. Еслп выразить аналогичным образом прямоугольные координаты, то получим еще такой аргумент, который выражается через среднюю долготу общей линии узлов обеих орбпт. Этот аргумент можно получить из уравнений (12) 10.  [c.602]

Большой прогресс в решении многих задач механики и, в частности, в решении задачи трех тел связан с развитием современных методов вычислительной математики. Применение электронно-вычислительных машин позволило находить численные решения дифференциальных уравнений с большой точностью, превосходящей точность аналитического решения, причем численное решение задачи трех тел отличается от решения задачи двух тел главным образом объемом вычислительной работы. В точности и бьгстроте вычислений заключается большое преимущество численных методов перед аналитическими. Однако численные методы в настоящее время еще не позволяют выявлять общие свойства движения и устанавливать функциональные зависимости между переменными, характеризующими состояние движения той или иной механической системы. Поэтому аналитические методы исследования движения, несмотря на успехи вычислительной математики, не утратили своей ведущей роли. Кроме того, чрезвычайно полезные качественные способы исследования целиком относятся к области аналитических методов.  [c.161]

Основные факты качественной теории системы (I) изложены им в ставшей классической книге О кривых, определяемых дифференциальными уравнениями . Одновременно в другом своем трехтомном труде Новые методы небесной механики Пуанкаре рассмотрел ряд вопросов качественной теории в связи с проблемой трех тел. Исследование вопросов устойчивости движения, рассмотренных Ляпуновым, изложено в книге Общая задача об устойчивости движения . Позднее исследования Пуанкаре, касающиеся системы вида (I), были дополнены Бендиксоном, а исследования Пуанкаре, относящиеся к уравнениям небесной механики, были уточнены Биркго-фом, использовавшим в своих работах методы теории множеств.  [c.15]

Вводные замечания. Задача трех или большего числа тел считается по справедливости одной из самых знаменитых проблем в математике. Тем не менее, до недавнего времени весь интерес в этой проблеме был направлен на формальную сторону вопроса и в частности на формальное решение посредством рядов. Пуанкаре был первым, получившим блестящие качественные результаты, касающиеся в особенности специального предельного случая так называемой ограниченной проблемы трех тел , рассмотренной впервые Хиллом. Что касается общей проблемы, то главные результаты, полученные Пуанкаре, следующие во-первых, он установил существование различных типов периодических движений методом аналитического продолжения во-вторых, он показал, что в силу самой структуры дифференциальных уравнений проблемы тригономстричсскис ряды могут быть полезными, и, наконец, в-третьих, он указал на пригодность этих рядов, как асимптотических. Все эти результаты остаются справедливыми не только для проблемы трех тел, но и для всякой гамильтоновой системы. К несчастью, в его исследованиях всегда имеется вспомогательный параметр //, причем при /X = О система будет специального интегрируемого типа. Таким образом, возникающие трудности (по крайней мере, отчасти) более зависят от особой природы интегрируемого предельного случая (когда два из трех тел имеют массу 0), чем присущи самой проблеме.  [c.259]

Известно, что планеты движутся вокруг Солнца по почти-эллиптическим орбитам, так как взаимное притяжение планет во много раз меньше, чем притяжение Солнца. Это приближение, сводящее задачу движения планет к задаче двух тел, служило основой для построения многих теорий движения планет. У кепле-ровской (опорной) орбиты элементы постоянны если теперь предположить, что вследствие взаимного гравитационного притяжения планет они изменяются, то для этих изменяющихся элементов можно составить дифференциальные уравнения. Выражения для элементов, получающиеся в результате решения уравнений (представляющие собой в общем случае длинные суммы синусоидальных, косинусоидальных и вековых членов), можно использовать для построения более точного приближения. Этот метод трудоемок, но на практике он быстро сходится, и более трех приближений приходится делать очень редко. Полученные таким образом аналитические выражения, справедливые на заданном интервале времени, называются общими возмущениями. Они позволяют нам сделать некоторые заключения о прошлом и будущем планетной системы, однако следует подчеркнуть, что указанным методом нельзя получить результаты, справедливые на любом, сколь угодно большом интервале времени. Метод общих возмущений применяется также к спутниковым системам, к орбитам астероидов, возмущаемым Юпитером, и к орбитам искусственных спутников. Этот метод является мощным инструментом астродинамики, поскольку в аналитических выражениях находят свое отражение различные возмущающие силы (например, влияние на спутник сплюснутости Земли).  [c.129]



Смотреть страницы где упоминается термин Дифференциальные уравнения общей задачи трех тел : [c.23]   
Смотреть главы в:

Небесная механика Основные задачи и методы Изд.2  -> Дифференциальные уравнения общей задачи трех тел



ПОИСК



Задача общая (задача

Задача трех тел

Задача трех тел общая

Общие уравнения

Уравнения в задаче трех тел



© 2025 Mash-xxl.info Реклама на сайте