Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сила возбуждения колебаний поперечных колебаний

Поперечные волны. Твердые, жидкие, газообразные тела больших размеров можно рассматривать как среду, состоящую из отдельных частиц, взаимодействующих между собой силами связи. Возбуждение колебаний частиц среды в одном мосте вызывает вынужденные колебания соседних частиц, те в свою очередь возбуждают колебания следующих и т. д.  [c.221]


С точки зрения механики приведенную информацию можно пояснить так. Существуют такие системы, в которых возникают колебания вследствие периодического изменения некоторых параметров системы например, возникают поперечные колебания стержня при периодическом изменении сжимающей продольной силы. Такие системы называются системами с параметрическим возбуждением, а сами колебания — параметрическими.  [c.236]

В окрестности резонансных частот колебаний при постоянной амплитуде силы возбуждения измерялись амплитудно-частотные и фазовые характеристики колебаний. На резонансных частотах измерялись формы поперечных и осевых колебаний. Демпфирование оценивалось по ширине резонансного пика и потерям энергии, равным работе силы возбуждения за цикл колебаний на резонансной частоте.  [c.86]

Поучительный пример параметрического возбуждения колебаний представляет собой система, показанная на рис. У.4, в. Шахтная клеть 1 равномерно движется по вертикальным направляющим 2, которые закреплены на шпалах 3. В этой системе поперечная жесткость, определяющая восстанавливающую упругую силу при поперечных колебаниях клети, переменна если клеть находится на уровне очередной пары шпал, то эта жесткость  [c.276]

На фиг. 109 даны схемы применения центробежных вибраторов направленного действия с расположением грузов в одной и двух плоскостях, при разных опорных условиях. Схемы а, б соответствуют продольным колебаниям заделанного стержня в, г — поперечным колебаниям его с возбуждением на конце силой. При отсутствии направляющих опор схема в воспроизведет случай свободной консольной системы, при наличии скользящих опор — случай возбуждения и силой и моментом. В схеме г скользящие опоры нужны еще и для устранения продольных колебаний. Схемы д, е соответствуют поперечным колебаниям с возбуждающим моментом на конце (с шарнирной опорой), схемы  [c.427]

Продольная сила возбуждает в пластине продольные колебания, поперечная сила, возбуждая изгиб-ные колебания, снижает порог динамической устойчивости ее. Схема возбуждения колебаний в наклонном излучателе показана на рис. 8.18. Решение задачи состоит в совместном рассмотрении продольных и изгибных колебаний пластины с целью обнаружения влияния на динамическую устойчивость ее величины угла, под которым действует возбуждающая сила.  [c.236]


Рассмотрим колебания балки (фиг. 1) постоянного поперечного сечения, имеющей шарнирные опоры по концам, с двумя точечными массами /л, и гпо, которые расположены симметрично, т. е. li = L I3 к массе приложена сила возбуждения, действующая по закону  [c.216]

Судовой валопровод представляет собой многоопорный вал, несущий на консоли большую массу — гребной винт. Достаточно точное определение амплитуд вынужденных поперечных колебаний такой системы не представляется возможным как в силу чрезвычайной сложности самой системы, так и из-за неопределенности таких важнейших величин, как возбуждение и демпфирование. Это вынуждает ограничиться в расчете определением только частот свободных колебаний системы с обеспечением должного удаления их от частот возбуждения на всем рабочем диапазоне чисел оборотов.  [c.224]

Рекомендации. Для наибольшего снижения виброактивности многопоточного механизма (машины) на частотах, определяемых действием рассмотренных (см. рис. 16, б) возмущающих сил, параметры п му этого механизма должны обеспечивать его соответствие тому типу (см. табл. 9), при котором наилучшим образом удовлетворяются требования по интенсивности возбуждения крутильных и поперечных колебаний и их спектральному составу. При известных характеристиках возмущающих сил оптимальный тип многопоточного механизма выбирают по табл. И и 12 или подобным нм, с использованием формул табл. 9 для количественной оценки интенсивности возбуждения крутильных и поперечных колебаний с той или иной гармоникой. Если характеристики действующих возмущающих сил неизвестны, но силы одинаковы, оптимальный тип механизма можно выбирать исходя из качественной оценки возбуждения колебаний. Для этого в формулах табл. 9 следует при нять значения средних квадратических отклонений равными нулю (а = 0). Это будет соответствовать теоретически предельным случаям, при которых крутильные или поперечные колебания с той или иной гармоникой вообще не будут возбуждаться. При этом в таблицах, подобных табл. II и 12, вместо типа системы будут обозначения, характеризующие возбуждаются или иет колебания с той или иной гармоникой, а если возбуждаются, то какого вида — крутильные или поперечные [9, 89]. Результаты качественной оценки возбуждения колебаний с к-й гармоникой частоты пересопряжения зубьев для зубчатых планетарных передач с п сателлитами приведены в табл. 13, а с к-й гармоникой лопастной частоты для центробежных насосов с разны.ми числами лопастей насосного колеса и направляющего аппарата 2 — в табл, 14,  [c.127]

Вынужденные поперечные колебания балки, вызванные движением опор (рис. 6.2.1). Здесь внешние силы неизвестны, задано кинематическое возбуждение прямая линия, соединяющая опоры Л и Д в неподвижной системе координат хОу движется по закону д y- (t)(x - а),  [c.339]

Возбуждение колебаний параметрическое 359 -Области 360 - Поперечные колебания однородной балки под действием продольной сжимающей силы 360 - Схемы 359  [c.606]

Возможно, что при применявшемся способе возбуждения продольных колебаний посредством приложения к образцу вдоль его оси периодически изменяющейся силы (так можно трактовать процесс натирания образца) имел место параметрический резонанс, выражавшийся в возникновении и нарастании поперечных колебаний. При изменении способа возбуждения продольных колебаний — использовании однократного продольного удара — поперечные колебания исчезли. (К стр. 338.)  [c.575]

Физическое истолкование результата. Вблизи 9 = со имеет место резонанс продольных колебаний, вследствие чего резко возрастает динамическая продольная сила в стержне. Поэтому жесткость стержня по отношению к поперечным колебаниям вблизи 0 = ш/ является периодической функцией времени с большой амплитудой изменения. Главные области параметрического возбуждения при отсутствии демпфирования показаны на рис. 10. При больших значениях коэффициента возбуждения ц области сливаются.  [c.366]

Аналитический метод оценки вертикальной реакции при вихревом возбуждении колебаний. Под действием установившегося потока и срыва вихрей модель секции пролетного строения моста подвергалась воздействию подъемных сил, связанных с автоколебаниями и вызываемых вихревым возбуждением. Используя обозначения подразд. 6.5 и принимая, что вертикальные и крутильные формы колебаний не являются связанными за счет аэродинамических факторов, уравнение движения поперечного сечения можно записать в виде  [c.231]


Электродинамическое взаимодействие состоит в возбуждении в токопроводящем материале вихревых токов, которые затем взаимодействуют с постоянным магнитным полем и вызывают колебания электронного газа , а это, в свою очередь, приводит к возбуждению колебаний атомов, т. е. кристаллической решетки материала. Например, вихревые токи, индуцируемые в изделии катушкой 2 (см. рис. 30) с переменным гоком, будут направлены перпендикулярно плоскости чертежа, а силы их взаимодействия с магнитным полем — параллельно поверхности изделия. В результате в изделии возбудится поперечная волна. Поскольку вихревые токи распределены в слое конечной толщины, возникающие упругие силы будут носить объемный характер, но вследствие скин-эффекта они будут концентрироваться в узком поверхностном слое.  [c.69]

Короткозамкнутую катушку обычно выполняют в виде тонкостенного цилиндра из металла с малым сопротивлением электрическому току. Однако при вращении такой катушки в магнитном поле воздушного зазора затрачивается значительная энергия, которая дополнительно нагревает подвижную катушку и снижает КПД установки. При вращении катушки в результате пересечения магнитных силовых линий в ней возникают короткозамкнутые токи, которые и вызывают нагрев катушки, а система в целом превращается в электромагнитный демпфер. Уменьшить нагрев подвижной катушки можно, выполнив ее в виде равномерно расположенных по высоте и изолированных одно от другого короткозамкнутых колец. Высота кольца должна быть значительно меньше высоты воздушного зазора магнитопровода возбудителя колебаний. При таком выполнении подвижной катушки значительно сокращается протяженность элементов, пересекающих магнитные силовые линии в поперечном направлении и. следовательно, значительно уменьшаются наводимые токи. Рабочие токи, наводимые в коротко-замкнутых кольцах неподвижной катушкой возбуждения, по которой протекает переменный ток, направлены в одну сторону, и, следовательно, переменная сила, создаваемая подвижной катушкой такого ЭДВ, равна сумме сил, создаваемых каждым коротко-замкнутым кольцом.  [c.274]

Для получения поперечных амплитуд смещения на излучателе-пластине возбуждение его осуществлялось продольной силой стержневого магнитостриктора, действующей под углом к срединной плоскости пластины [6, 7]. Экспериментально установлено, что в нашем случае пластина, возбуждаемая действующей под углом силой Р, изменяющейся во времени по гармоническому закону, колеблется практически с одинаковой амплитудой смещения по ширине. Этим определяется задача о колебании с одной пространственной переменной X,  [c.236]

Таким образом, из-за неравномерности потока в абсолютном движении во время колебаний возникает переменная аэродинамическая сила, повернутая на 90° по отношению к вектору реакции опоры в сторону вращения. Это и есть та сила, которая прибавляется к поперечной силе в подшипниках и которая способствует возбуждению прямой прецессии вала.  [c.251]

При возбуждении изгибных колебаний в участке 2 для поперечных перемещений стенки в кольцевом сечении, жестко связанном с цилиндром, создается высокое входное сопротивление для колебательной перерезывающей силы F[l]  [c.239]

По мнению некоторых исследователей, оптимальный резонансный режим волновода может быть получен только при условии, что поперечная возбуждающая сила приложена в пучности. При этом изгибные колебания сводятся к поступательным движениям каждого элемента поперек оси стержня (поворот исключен). Этот способ носит название — возбуждение силой.  [c.87]

При симметричном трехфазном возбуждении сердечника трансформатора в местах стыковки ярм и стержней возникают эквивалентные силы, показанные иа рис. 5-9, которые могут вызвать колебания сердечников, показанные на рис. 5-10. Магнитный сердечник, способный вибрировать таки-М образом и состоящий из равномерно распределенных масс и упругих элементов, может быть приведен к простому вибратору пружина — масса, для которого возбуждение имеет место только в случае, когда для сердечника в целом су.мма сил Р, действующих на концы стержней, перпендикулярна соответствующей оси стержня и возможного поперечного сдвига.  [c.225]

Крутильная сварочная колебательная система в принципе существенно проще продольно-поперечной и обладает тем же основным достоинством — осевым приложением силы N. Из-за недостаточного развития техники получения мощных крутильных колебаний, для возбуждения крутильных колебаний в этой системе сейчас используют довольно сложное и не очень эффективное устройство из трех преобразователей с концентраторами, которые расположены под углом 120° один к другому (рис. 23, а). Однако  [c.97]

Крутильная сварочная колебательная система проще продольно-поперечной и обладает тем же достоинством — осевым приложением силы N. Для возбуждения крутильных колебаний стержня используют три преобразователя с концентраторами, расположенными под углом 120° друг к другу. Колебания крутильной системы можно возбудить специальным крутильным преобразователем [15]. Для анализа условий работы сварочной системы надо знать характеристики нагрузки, с которой система связана через сварочный наконечник. Часть ультразвуковой энергии, поступающей в зону сварки, необратимо рассеивается в виде тепла, т. е. нагрузка имеет активную компоненту сопротивления. Это означает, что через колебательную систему в нагрузку передается энергия колебаний —в системе существует бегущая волна. Исследуемую систему погружают в ванну с водой до половины диаметра изгибно-колеблющегося стержня и включают колебания. На рис. 14 [48] показана фотография, на которой виден различный характер колебаний в рабочей части стержня (между опорой 3 и продольно-колеблющимся концентратором 2), где отсутствует узел изгибных колебательных смещений, и в опорной части стержня (между концентратором 2 и массой 1), где регулярно чередуются узлы  [c.148]


Висячие и вантовые мосты следует рассчитывать таким образом, чтобы они могли противостоять силам лобового сопротивления, соответствующим средней скорости ветра. Но такие мосты также восприимчивы к различным аэроупругим эффектам, которые включают дивергенцию (или поперечную потерю устойчивости), вихревые возбуждения колебаний, флаттер, галопирование и бафтинг, сопровождаемый автоколебаниями. Исследование этих явлений возможно лишь на основе данных испытаний в аэродинамической трубе. Различные виды таких испытаний кратко описаны в подразд. 8,4.1. Методики анализа чувствительности поперечных сечений балок жесткости висячих мостов к аэроупругому взаимодействию с воздушным потоком и соответствующие им соображения по расчету представлены в подразд. 8.4.2- 8.4.б. Краткий обзор исследований работы висячих и вантовых мостов под действием ветра включен в подразд. 8.4.7.  [c.225]

На рис. 3 приведены относительные значения эквивалентных масс подкрепленной оболочки диаметром 170 см, длиной 90 см и толщиной 1,2 см для форм колебаний с различным числом узловых линий по окружности и при условии, что v x) 1, Точки, обозначенные незачерненными кружочками, треугольниками и квадратиками, соответствуют формам с преимущественно поперечными колебаниями оболочки, а зачерненными кружочками и треугольниками — колебаниям торцевой пластины, Поперечные колебания пластины вызывают незначительные колебания оболочки, поэтому соответствующая этим формам эквивалентная масса сравнительно небольшая. Входная податливость к поперечной силе, приложенной к кольцу, на этих частотах небольшая, ввиду малости амплитуд п (а ) в этой точке. Формы, обозначенные незачерненными кружочками, треугольниками и квадратиками, имеют амплитуду в точке возбуждения Хд, примерно равную единице, и эквивалентную массу (0,15- -0,25) М, поэтому максимальные ускорения на резонансных частотах примерно постоянны. На рис. 4 приведена амплитудно-частотная характеристика ускорения в точке возбуждения Жц, измеренная на модели диаметром 30 см, длиной 16 см и толщиной 0,20 см [12]. Основные зубцы соответствуют р=2- -10, небольшие зубцы на частотной характеристике связаны с резонансами торцевой пластины.  [c.37]

Впервые ёще М. Фарадей [51 (1831 г.) экспериментально наблюдал и исследовал параметрические колебания. Затем G. Мельде [6] (1859 г.), наблюдая колебания струны, цатянутой между двумя противоположными точками звучащего колокола, пришел к мысли об экспериментальном изучении возбуждений колебаний в натянутой тонкой струне, один из концов которой был жестко закреплен, а другой прикреплен к колеблющемуся камертону. Движение точки прикрепления тpyнь совпадало с направлением оси струны, а период поперечных колебаний струны был вдвое больше периода колебаний камертона. Первое теоретическое объяснение явления параметрического резонанса было дано Дж. Реле м [7] (1883— 1887 гг.). Релей рассмотрел ряд задач о параметрическом возбуждении колебаний механических систем (качелей, струны), не затрагивая вопроса о вынужденных колебаниях в системе с переменными параметрами под действием внешней силы.  [c.6]

Колебания ротора. Ротор гидрогенератора представляет собой электромагнит с большим числом пар полюсов. Поэтому частота вращения ротора гидрогенератора обычно значительно меньше частоты вращения турбогенераторов. Масса ротора крупного гидрогенератора составляет несколько сот тонн. Вал ротора круглый, часто с вертикальной осью. Схема ротора гидрогенератора показана на рис. 3, где I — вал ротора 2 — подшипники 3 — подпятник 4 — полюса ротора 5 — обод 6 — спицы ротора. Проблема колебаний ротора для гидрогенераторов имеет меньшее значение, чем для турбогенераторов, вследствие малых частот вращения, отсутствия двоякой изгибной жесткости и вертикального расположения оси вала. Ротор гидрогенератора удерживается от поперечных смещений подшипниками скольжения. Автоколебания вала не наблюдаются, поскольку подшипники снабжаются поворачивающимися колодками. Рабочая частота вращения ротора обычно ниже наименьшей критической частоты. В гидрогенераторах возникают источники возбуждения колебаний ротора, не свойственные турбогенераторам. Таким источником, например, является вращающаяся вместе с ротором сила одностороннего магнитного притяжения ротора к статору. Эта сила может возникнуть при эксцентричном расположении наружной окружности ротора относительно оси вала или при отключении питания части полюсов ротора. Большее влияние электромагнитных сил на вибрации ротора в гидрогенераторах по сравнению с турбогенераторами объясняется как многополюСностью,  [c.522]

Механическая модель колебаний жидкости в баке. При поперечных колебаниях бака колебания жидкости внутри него пропорциональны координате А. ( ). Дифференциальное уравнение дтя А. (6.3,12) есть уравнение вынужденных колебаний осциллятора, правая часть которого выражает кинематическое возбуждение от стенок бака. Это дает возможность при решении задач динамики твердого тела с полостью, частично заполненной жидкостью, колебания жидкости внутри бака заменить колебаниями математических маятников каждому тону колебаний жидкости догсжен соответствовать свой маятник. Масса, длина и положение точки его подвеса должны быть выбраны такими, чтобы поперечная сила и ее момент от колебаний маятника были такими же, как и от колебаний жидкости.  [c.346]

Параметрическим называют такое возбуждение колебательной системы, при котором сила непосредственно не вызывает колебания, но она изменяет один или несколько параметров системы во времени, поэтому коэффициенты дифференциального уравнения системы зависят от времени. Колебания, имеющие место в системе при этих условиях, называют параметрическими, они могут быть затухаюпгими и нарастающими во времени. Особый интерес представляют нарастающие колебания. Характерным примером является вращение тяжелого диска, насаженного на вал прямоугольного поперечного сечения, у которого жесткость на изгиб в двух взаимно перпендикулярных направлениях имеет максимальное и минимальное значения. Обозначив Шд - угловую скорость вращения вала, Ь = Ас I с -коэффициент глубины модуляции параметра, дифференциальное уравнение колебаний диска в одной плоскости представим в виде  [c.359]

Некоторые другие классы параметрических колебаний упругих систем. Параметрические колебания встречаются также при изучении динамики валов, роторов и более сложных механизмов [7]. Так, вал, сечение которого имеет неодинаковые главные жесткости, может испытывать интенсивные поперечные колебания даже в тс.м случае, если он полностью уравновешен и если его ось параллельна ускорению сил тяжести (рис. 2, а). Непосредственной причиной возбуждения колебаний в этом случае является периодическое изменение жесткости во времени. Эти колебания можно трактовать и как параметрически возбуждае.мые колебания, и как автоколебания. В неподвижной системе координат поведение вала описывается, как в других параметрических задачах, дифференциальными уравнениями с периодическими коэффициентами. Если использовать систему координат, вращающуюся вместе с валом, то получим дифференциальные уравнения с постоянными коэффициентами. Более четки.м в классификационном отношении примером может служить вал, совершающий поперечные колебания лишь в одной плоскости (рпс. 2, б). Примером системы, в которой периодически меняется некоторая приведенная масса, может служить шатунно-кри-вошипный механизм (рис. 2, в). Жесткость периодически меняется в механизме спарниковой передачи в локомотивах (рис. 2, г). Подробнее см. работы [1, 7, 8, 22].  [c.348]


Струн поперечные колебания 74, 75, 77, 134, 193 бесконечно большая нагрузка 134 возбуждение импульсом 211 возбуждение щипком 210 вынужденные колебания 215 графический метод 250, 252 жесткость 229, 262 закрепленные концы 202 Зеебека наблюдения 206 значения Т я V 201 конечная нагрузка 227 меняющаяся линейная плотность 138, 237, 257 нагрузка в виде двух масс 186 нагрузка, сосредоточенная в отдельных точках 195 начальные условия 210 несовершенная гибкость 262 обще-дифференииальное уравнение 200 отражение в закрепленной точке 251 отражение в точке соединения 256 периодическая сила, приложенная в одной точке 218 податливость концов 222 скрипичная струна 230 собственные частоты 206, соединенные струны 256, 262 узлы при приложении силы 256, фор1епиапная сгруна 212  [c.502]

В перпендикулярном потоку направлении. Имеющийся опыт показывает, что знание средних коэффициентов подъемной силы и сопротивления поперечного сечения, полученных в статических условиях на неподвижном объекте в виде функций угла атаки, служит достаточной основой для построения удовлетворительного аналитического описания явления галопирования. Таким образом, галопирование управляется по существу квазистационарпыми силами. Подобно случаю вихревого возбуждения колебаний, оно будет рассматриваться и описываться аналитически как двумерное по своей природе явление. Другие вопросы, связанные с реакцией при галопировании, рассмотрены в работах [6.46—6.50].  [c.167]

Электродинамическое взаимодействие состоит в возбуждении в токопроводяш,ем материале вихревых токов, которые затем взаимодействуют с постоянным магнитным полем и вызывают колебания электронного газа , а это, в свою очередь, приводит к возбуждению колебаний атомов, т. е. кристаллической решетки материала. На рис. 1.28 вихревые токи, индуцируемые в ОК катушкой 2 с переменным током, направлены перпендикулярно плоскости чертежа, а силы их взаимодействия с магнитным полем — параллельно поверхности ОК. В результате в ОК возбудится поперечная волна. Обратный эффект состоит в возбуждении вихревых токов в металле, колеблющемся в постоянном магнитном поле под действием упругих волн. Эти вихревые токи индуцируют переменный ток в катушке 2, которая в данном случае служит приемником.  [c.68]

Существуют несколько модификаций многоволновых наблюдений, в которых при поочередном возбуждении среды вертикальной (в направлении Z) и горизонтальными (в направлении X и Y) силами регистрируются три компоненты колебаний. Полное 3-компонентное возбуждение при 3-компонентном приеме рассматривается в сейсмоакустике как технология 9С. Обычно в сейсморазведке только на продольных волнах достаточно использовать одну 2 компоненту, однако продольная волна также регистрируется на Х-компоненте. Если точки отражений не находятся на линии профиля, то продольная волна регистрируется и на Y-компоненте. Определение направления вектора колебаний как в поперечной, так и в продольной волне осуществляется с использованием записей на всех трех компонентах. Знание поляризации вектора колебаний поперечных волн (поляризационный анализ) позволяет получить дополнительную и весьма ценную информацию о геологических свойствах среды.  [c.156]

Руст и Байлитис [4985] недавно высказали предположение, что в силу остаточных явлений при возбуждении колебаний играет роль только разность между деформациями насыщения и остаточной. Поэтому они предлагают в вибраторах кубической формы вводить дополнительное поперечное поле как постоянное, так и переменное. Это должно привести к тому, что в течение половины периода колебаний векторы намагничен-  [c.58]

МОДУЛЬ [продольной упругости определяется отношением нормального напряжения в поперечном сечении цилиндрического образца к относительному удлинению при его растяжении сдвига измеряется отношением касательного напряжения в поперечном сечении трубчатого тонкостенного образца к деформации сдвига при его кручении Юнга равен нормальному напряжению, при котором линейный размер тела изменяется в два раза] МОДУЛЯЦИЯ [есть изменение по заданному во времени величин, характеризующих какой-либо регулярный физический процесс колебаний <есть изменение по определенному закону какого-либо из параметров периодических колебаний, осуществляемое за время, значительно большее, чем период колебаний амплитудная выражается в изменении амплитуды фазовая указывает на изменение их фазы частотная состоит в изменении их частоты) пространственная заключается в изменении в пространстве характеристик постоянного во времени колебательного процесса] МОЛЕКУЛА [есть наименьшая устойчивая частица данного вещества, обладающая его химическими свойствами атомная (гомеополярная) возникает в результате взаимного притяжения нейтральных атомов ионная (гетерополярная) образуется в результате превращения взаимодействующих атомов в противоположно электрически заряженные и взаимно притягивающиеся ионы эксимерная является корот-коживущим соединением атомов инертных газов друг с другом, с галогенами или кислородом, существующим только в возбужденном состоянии и входящим в состав активной среды лазеров некоторых типов МОЛНИЯ <есть чрезвычайно сильный электрический разряд между облаками или между облаками и землей линейная является гигантским электрическим искровым разрядом в атмосфере с диаметром канала от 10 до 25 см и длиной до нескольких километров при максимальной силе тока до ЮОкА)  [c.250]

Характерным для высоких строительных сооружений является возбуждение аэроупругих колебаний при малых числах Струхаля 8Ь<0,05, называемых галопированием. Причина этого вида неустойчивости обусловлена отрицательными величинами коэффициента подъемной или поперечной силы соответствующего поперечного сечения сооружения. Колебания при галопировании характеризуются в основном лишь одной степенью свободы и возможностью применения квазистационарной аэродинамической теории [55], что существенно упрощает расчеты. Пусть й - скорость перемещения тела нормально потоку а = ar tg(н / и) - угол, под которым происходит набегание потока на профиль -относительная скорость (рис. 7.8.4).  [c.521]

Существует ряд способов возбуждения ультразвуковых колебаний, в том числе механический, рациационный, лазерный, магнитный и др. [2, 4, 5]. В практике диагностирования в полевых условиях для получения и ввода ультразвуковых колебаний применяют специальные устройства — преобразователи, основанные на использовании электромагнитно-акустического (ЭМА) и пьезоэлектрического эффектов. Важным преимуществом ЭМА-преобразователей является возможность контроля бесконтактным методом через слой изоляции. Вместе с тем такие преобразователи, в силу их конструктивных особенностей и низкого коэффициента преобразования, используются для прозвучивания поперечными и продольными волнами по нормали к поверхности объекта контроля и применяются в основном для толщинометрии металлоконструкций.  [c.147]

Кручение относительно вертикальной осн. При возбуждении поперечных волн большой интерес представляет комбинация сил, показанная на рис. 6.3,г, поскольку в этом случае отсутствует излучение одольных волн. С учетом симметрии, применение этой комбинации к поверхности упругого полупространства только удвоит величину определяемых формулой (6.10) смещений без изменения характеристики направленности. Эксперименты с таким источником проводились Пекерисом и другими [118]. В работе [103] описывается импеданс грунта для кругового диска, поворачивающегося вокруг своей оси. Апплегэйт [6] построил и продемонстрировал источник, который передавал крутильное усилие на грунт. Маховое колесо массой ИЗ кг и частотой вращения 3,6 с- развивало энергию около 2250 Дж. Приводимые в движение соленоидом металлические блоки, сцепленные с помощью штырей с маховым колесом, внезапно прекращали вращение последнего. В результате вращательный момент передавался платформе, которая прикреплялась к грунту с помощью четырех металлических штырей. При возбуждении этим источником наблюдались рефрагированные поперечные волны на расстояниях около 60 м. Несмотря на специальные меры по обеспечению симметрии источника относительно вертикальной оси, наблюдались также заметные продольные колебания. Крутильный вибрационный источник описывался также Брауном >[26]. Существенным недостатком этого типа источников с точки зрения сейсморазведки на отраженных волнах является малая интенсивность излучения в субвертикальных направлениях.  [c.233]

Для больщинства сооружений ветер слабо влияет на частоту колебаний. В этом случае п па, и первым слагаемым в (4.2) можно пренебречь. Параметр к (так же, как и ба) зависит от формы поперечного сечения, приведенной скорости, амплитуды колебаний и числа Рейнольдса. Если параметр йа положителен, то коэффициент потерь при действии силы аэродинамического демпфирования уа снижает амплитуду колебаний. В случаях, когда значение уа отрицательно и его величина такова, что 7а > Ук, Yoyи становится отрицательным, в сооружении наблюдаются нарастающие колебания. Отрицательное аэродинамическое демпфирование в данном случае рассматривают как аэродинамическое возбуждение.  [c.82]



Смотреть страницы где упоминается термин Сила возбуждения колебаний поперечных колебаний : [c.220]    [c.348]    [c.366]    [c.214]    [c.163]    [c.117]    [c.248]    [c.268]    [c.56]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.373 , c.374 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.373 , c.374 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.373 , c.374 ]



ПОИСК



Возбуждение колебаний параметрическое 359 Области 360 - Поперечные колебания однородной балки под действием продольной сжимающей силы 360 - Схем

Возбуждения

КОЛЕБАНИЯ Возбуждение

Колебания Силы возбуждения

Колебания поперечные

Сила возбуждения колебаний поперечная в балках при сложном

Сила возбуждения колебаний поперечная — Влияние на частоту

Сила возбуждения колебаний поперечных колебаний стержне

Сила поперечная



© 2025 Mash-xxl.info Реклама на сайте