Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гребного винта

Свойства винтовых поверхностей используются в воздушных и гребных винтах для создания тяги, приводящей в движение самолеты, суда и др., в осевых вентиляторах и пропеллерных насосах, в винтовых спусках и пр.  [c.184]

Поверхности косых цилиндров с тремя направляющими применяют при конструировании гребных винтов судов и пропеллеров самолетов. В этом случае за направляющие кривые линии принимают соосные цилиндрические винтовые линии различных диаметров и шагов, а за направляющую прямую линию — ось цилиндрических винтовых линий (рис. 298).  [c.202]


Произвольную поверхность, для которой не найден простой закон ее образования, называют графической. Такие поверхности имеют часто очень сложную форму. Это поверхности гребного винта, крыльчатки, колеса водяной турбины, кулачков и т. п. Они задаются на чертеже рядом сечений параллельными плоскостями, отстоящими друг от друга на единицу длины. К графическим поверхностям относится и рельеф земной (топографической) поверхности. Этот рельеф характеризуется линиями — горизонталями, полученными при пересечении поверхности  [c.381]

К деталям (изделиям) с поверхностями двойной кривизны относят гребные винты, лопатки турбин, детали корпусов автомашин, корпуса пароходов, фюзеляжи, крылья и хвостовое оперение самолетов.  [c.252]

Для некоторых поверхностей в качестве секущих поверхностей применяют соосные цилиндры (например, для гребных винтов).  [c.253]

Примером задания на чертеже поверхности двойной кривизны служит теоретический чертеж гребного винта моторной лодки (рис. 384).  [c.253]

Из оловянных бронз изготовляют арматуру, шестерни, подшипники, втулки и др. Безоловянные бронзы используют как заменители оловянных. Их применяют для изготовления гребных винтов крупных судов, тяжелонагруженных шестерен и зубчатых колес, корпусов насосов, арматуру для морской воды, детали химической и пищевой промышленности.  [c.172]

Отливки из титановых сплавов применяют в судостроении (гребные винты, насосы), в турбиностроении (лопатки турбин, диски), в авиации (диски и лопатки компрессоров), в электронной и вакуумной технике и других отраслях.  [c.173]

Механическое истирающее воздействие на металл другого твердого тела при наличии коррозионной среды (например, зубьев шестерен, омываемых водой) или непосредственное воздействие самой жидкой или газообразной коррозионной среды (например, воды на гребные винты судов, насосы, трубы) приводит к ускорению коррозионного разрушения вследствие износа защитной пленки окислов или других соединений, образующихся на поверхности металла в результате взаимодействия со средой. К этому виду разрушения, называемого коррозией при трении, недостаточно устойчивы, например, серый чугун с повышенным содержанием углерода, оловянистые бронзы и некоторые другие материалы.  [c.338]

В некоторых случаях, чтобы воспроизвести истинные условия обтекания отдельных деталей того или иного объекта, испытуемых в аэродинамических (гидродинамических) трубах или иа специальных стендах, требуются профили скорости специальной формы. (Например, при испытании отдельных элементов электрофильтров, батарейных циклонов, котлов, гребных винтов, помещаемых в вихревом следе за судном, н т. д.). Необходимые профили скорости в этом случае могут быть также созданы с помощью решеток, но специальных форм.  [c.11]


Графический способ задания кинематических поверхностей имеет две разновидности. Сложные поверхности технических форм, имеющие образующие переменной формы, могут быть заданы некоторым числом (совокупностью) принадлежащих им точек и линий — каркасом. Такие поверхности обычно называют каркасными. Каркасные поверхности задают на чертеже проекциями элементов каркаса. Каркас поверхности в этом случае называется дискретным в отличие от непрерывного каркаса кинематической поверхности. На полученном чертеже точки (и линии) поверхности, не лежащие на линиях каркаса, могут быть построены только приближенно. Поэтому поверхность, заданная каркасом, не вполне определена, могут существовать и другие поверхности с гем же каркасом, но несколько отличающиеся одна от другой. Примерами каркасных поверхностей могут служить поверхности обшивки самолетов, автомобилей и судов, некоторые технические детали, имеющие сложную форму, например лопатки турбин и компрессоров, гребные винты, и т. п.  [c.82]

К элементам о разнородными электродами относится описанный ранее сухой элемент. Металл, имеющий электропроводящие включения на поверхности, медная труба, соединенная с железной трубой, бронзовый гребной винт, контактирующий со  [c.23]

Коррозионная усталость часто бывает причиной неожиданного разрушения вибрирующих металлических конструкций, рассчитанных на надежную работу в воздушной среде при нагрузках ниже предела выносливости. Например, неточно центрированный вал гребного винта на судне будет нормально работать до тех пор, пока не появится течь и участок вала, выдерживающий максимальные знакопеременные нагрузки, не окажется в морской воде. Тогда в течение нескольких дней могут образоваться трещины, из-за которых вал быстро разрушится. Стальные штанги насосов для откачки нефти из буровых скважин имеют ограниченный срок службы ввиду коррозионной усталости, возникающей в буровых водах. Несмотря на применение высокопрочных среднелегированных сталей и увеличение толщины штанг, разрушения этого типа приносят миллионные убытки нефтяной промышленности. Металлические тросы также нередко разрушаются вследствие коррозионной усталости. Трубы, по которым подаются пар или горячие жидкости, могут разрушаться подобным образом, вследствие периодического расширения и сжатия (термические колебания).  [c.157]

Катодная защита поляризацией до потенциала ниже критического потенциала питтингообразования. Для этого можно применять приложенный извне ток, а также в хорошо проводящих средах (например, морской воде) — защиту цинковыми, железными или алюминиевыми протекторами [44]. Аустенитные нержавеющие стали, применяемые для сварки малоуглеродистой листовой стали, а также гребные винты из стали 18-8, установленные на судах из черной стали, не подвергаются питтингу.  [c.315]

Относительное движение — перемещение лодки по поверхности воды, создаваемое гребным винтом скорость относительного движения л=8 км/ч.  [c.243]

Обозначим точкой L положение лодки через некоторое время после начала движения. Скорость лодки относительно берегов - абсолютная скорость и вс — направлена вдоль прямой АС и складывается из собственной скорости сообщаемой гребным винтом или веслами, и из переносной скорости течения реки Vp.  [c.249]

КАВИТАЦИЯ - образование пузырьков, заполненных газом, паром и их смесью, в результате уменьшения давления в быстро движущейся жидкости или под действием ультразвука приводит к снижению эффективности работы и более быстрому износу частей насосов, турбин, гребных винтов применяется в ультразвуковых методах обработки материалов.  [c.21]

В большинстве случаев трение является вредным сопротивлением, и для его преодоления приходится затрачивать часть подводимой энергии. Например, в двигателе внутреннего сгорания происходит превращение тепловой энергии в механическую. Этот процесс протекает в цилиндре двигателя. Полученная в цилиндре механическая энергия (работа) передается на коленчатый вал не полностью, так как часть ее затрачивается на преодоление трения в механизме двигателя — трения поршня о втулку цилиндра и трения в подшипниках. С коленчатого вала энергия на гребной винт передается через систему промежуточных валов, в подшипниках которых также имеется трение. Все эти виды трения представляют собой вредные сопротивления.  [c.91]


Пример 1.39. Гребной винт диаметром 0=1500 мм вращается со скоростью п=300 об/мин. Определить окружную скорость наиболее удаленных точек винта.  [c.116]

Преобразование одного вида энергии в другой, а также совершение работы какой-либо машиной всегда сопровождается потерями. Так, например, мощность, передаваемая двигателем на гребной вал, расходуется не только на совершение полезной работы винта, но и на преодоление трения в подшипниках валопровода, трения в дейдвуде, на преодоление потерь на гребном винте от завихрений и др.  [c.155]

Пример 1.70. После отхода от пристани судно водоизмещением 1000 т, двигаясь равноускоренно, прошло. 300 м. К концу этого пути скорость судна достигла 21,6 кж/ч. Определить величину силы Р упора гребного винта, приводящего судно в движение.  [c.171]

Каждая деталь машины в отдельности является системой материальных точек — телом, а машина в целом представляет собой материальную систему, состоящую из абсолютно твердых тел. При таком понимании материальной системы силы, действующие в системе, могут быть одновременно внешними и внутренними в зависимости от того, движение каких тел рассматривается. Например, сила, действующая на поршень двигателя внутреннего сгорания от давления газов, при рассмотрении кривошипно-шатунного механизма или машины в целом является внутренней силой, а при рассмотрении отдельно шатуна как материальной системы считается внешней. Для двигателя в целом внешней силой является сила полезного сопротивления того механизма или машины, для приведения в действие которых предназначен двигатель, например электрогенератора, компрессора, гребного винта и т. д.  [c.174]

Заметим, что и гребной винт действует по одному из рассмотренных принципов, а именно, вода является неподвижной гайкой винт, вращаясь в ней, одновременно движется поступательно.  [c.188]

Сущность статической балансировки состоит в том, что, например, гребной винт 1 (рис. 208), насаженный на вал 2, ставят на призмы 3, установленные в строго горизонтальном положении. Если все лопасти имеют одинаковые размеры и плотность материала одинакова, то винт в любом положении будет находиться в равновесии.  [c.199]

По форме и конструктивным признакам различают валы постоянного поперечного сечения (трансмиссионные и валы приводов гребных винтов на судах) ступенчато-переменного сечения (такую форму имеет подавляющее большинство валов) валы с фланцами для соединения по длине отдельных участков одного и того же вала или отдельных валов. Встречаются валы переменного сечения, отдельные участки которых имеют коническую форму. Особую группу составляют валы-шестерни и валы-червяки (шестерня или червяк изготовлены заодно целое с валом).  [c.375]

Так, если гребной винт моторной лодки вращается с частотой п = 300 об мин, то эта скорость в рад сек равна  [c.108]

Рабочее колесо осевого насоса похогке на гребной винт корабля (рис. 2.19). Оно состоит из втулки 7, на которой закреплено несколько лопастей 2. Механизм передачи энергии от рабочего колеса жидкости тот же, что и у центробежного насоса. Отводом насоса служит осевой направляющий аппарат 3, с помощью которого устраняется закрутка жидкости и кинетическая энергия ее преобразуется в эыер-  [c.173]

Среди большого разнообразия деталей и узлов машин выделяют такие, которые применяют почти во всех машинах (болты, валы, муфты, механические передачи и т. п.). Эти детали (узлы) называют деталями общего назначения и изучают в курсе Детали машин . Все другие детали, применяющиеся только в одном или несколы их типах машин (поршни, лопаткн турбин, гребные винты и т. п.), откосят к деталям специального назначения и изучают в специальных курсах.  [c.4]

В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]

Области применения сплавов. Титан и его сплавы используют там, где главную роль играют высокая удельная прочность и хорошая сопротивляемость коррозии. Титановые сплавы применяют в авиации (обшивка самолетов, диски и лопатки компрессора и т. д.), в ракетной технике (корпуса двигателей, баллоны для сжатых и сжиженных газов, сопла и т. д.) — в химическом машиност])оении (оборудование для таких сред, как хлор и его растворы, теплообменники, работающие в азотной кислоте и т. д.), судостроении (гребные винты,[обшивкн морских судов, подводных лодок и торпед), в энергомашиностроении (диски и лопатки стационарных турбин), в криогенной технике и т. д.  [c.320]


Чем больще упругость системы, т. е. чем длиннее и податливее детали, меньще их сечения, моменты инерции и модуль упругости их материала, те.м меньще фактическая сила, напрягающая детали, и в тем более ослабленном виде приходят силы к последним звеньям механизма. Введение упругих связей в систему, например стяжка упругими болтами, установка пружинных муфт между валами и конечным элементом (маховик, гребной винт, электродвигатель, редуктор), упругая крутильная подвеска двигателя и т. д. резко снижают максимальные напряжения в системе.  [c.149]

Соединение лопасти воздушного гребного винта (алюминиевый сплав) со стальной втулкой (рис. 416, а), работающее преимущественно на растяжение центробежной силой лопасти, неравнопрочно. Вследствие одинаковости профилей витков лопасти и втулки напряжения в них одинаковы, тогда кйк допускаемые напряжения у алюминиевого сплава примерно в 2 раза меньше, чем у стали. Лопасть затянута с упором в торец втулки, вследствие чего в опасном верхнем сечении лопасти при монтаже возникают напряжения растяжения, складывающиеся с рабочими напряжениями растяжения. Изгибающий момент поперечных аэродинамических сил, воспринимаемый в нижней части цилиндрической направляющей /, в верхней части передается на витки, что ухудшает условия их работы.  [c.575]

При. генепис водяной смазки оправдано в тех случаях, когда машнна работает с водой (водяные насосы) н ш в поде (усдановкн гребных винтов, подводный механизированный инструмент н т., д.). В отдельных случаях применяют водяную смазку н на машинах общего назначения. При, водяной смазке валы выполняют пз закаливающихся нержавеющих сталей (типа 30 х 13, 40 х 13). Металлические корпуса подшипников необходимо защищать от коррозии.  [c.383]

Изучение вопросов усталости в сопротивлении материалов имеет чрезвычайно большое значенне. Такие ответственные детали, как оси железнодорожных вагонов, коленчатые валы, шатуны моторов, гребные винты, клапанные пружины, воздушные винты, поршневые пальцы н многие другие детали, выходят из строя главным образом вследствие разрушений усталостного характера.  [c.588]

Применение воды в качестве смазывающего материала уменьн1ает опасность перегрева подшипников. Вязкость у воды низкая, а теплоемкость и 2...2,,5 раза больше, чем у масла поэтому теплообразование — незначительное, а теплоотвод - большой. Существенные недостатки — опасность коррозии, требующая применения коррозионно-стойкой стали для покрытия шейки или для изготовления вала, и низкая температура кипения воды. Области применения воды в качестве смазочного материала — подшипники, контактирующие с водой, т. е. подшипиики насосов, гидротурбин, гребных винтов.  [c.145]

КЛАССИФИКАЦИЯ И ОБЛАСТИ ПРИМЕНЕНИЯ. В зависимости от содержания цинка латуни носят разные названия. Сплав Zn—Си с 40% Zn, мюнц-металл (а-,р-латуни) применяют преимущественно в конденсаторных системах, в которых в качестве охлаждающей среды используют пресную воду (например, воду Великих озер). Морская латунь имеет близкий состав, но содержит еще 1 % Sn. Марганцовистая бронза также аналогична по составу, но дополнительно содержит по 1 % Sn, Fe и РЬ. Помимо прочего, ее используют для изготовления гребных винтов. Обесцинкование гребных винтов из марганцовистой бронзы в морской воде в какой-то степени предотвращается катодной защитой при контакте винтов со стальным корпусом судна.  [c.331]

Задача 184-36. Вниз по течению реки равномерно пльшет лодка, приводимая в движение гребным винтом от мотора. Скорость течения реки 4 км/ч, скорость лодки, сообщаемая ей гребным винтом по отношению к воде, составляет 8 км/ч. Определить скорость лодки относительно берегов и расстояние, которое проходит лодка вдоль берегов за 20 мин.  [c.243]

Задача 460. Гребной винт судна, имевший угловую скорость о) = 20л рад1сек, останавливается через 20 сек вследствие сопротивления воды и трения в подшипниках. Считая вращение винта равнопеременным, определить угловое ускорение и число оборотов винта до остановки.  [c.179]


Смотреть страницы где упоминается термин Гребного винта : [c.14]    [c.340]    [c.340]    [c.403]    [c.140]    [c.8]    [c.448]    [c.283]    [c.117]    [c.292]    [c.301]    [c.142]   
Словарь-справочник по механизмам (1981) -- [ c.67 ]

Словарь - справочник по механизмам Издание 2 (1987) -- [ c.82 ]



ПОИСК



Автомобили-амфибии Гребные винты

Винты гребные - Колебания крутильные Определение коэфициентов сопротивления

Винты гребные с крестообразным гнездом в головке— Штамповка

Винты гребные с цилиндрической головкой

Винты гребные — Момент инерции

Винты гребные — Момент инерции грузовые

Винты гребные — Момент инерции зажимные—Расчет

Винты гребные — Момент инерции механизмов винтовых с соосным

Винты гребные — Момент инерции расположением пар

Винты гребные — Момент инерции с внутренним шестигранником Штамповка

Винты гребные — Момент инерции с квадратной головкой и буртиком

Винты гребные — Момент инерции с полупотайной головкой

Винты гребные — Момент инерции с потайной головкой

Винты гребные — Момент инерции с-полукруглой головкой

Винты гребные — Момент инерции установочные

Винты гребные — Момент инерции ходовые

Винты — Головки — Конструктивные гребные — Момент инерции

Винты — Запас устойчивости Гребные—Момент инерции

Гидравлическое оборудование влияние термодинамических гребные винты

Гидродинамические трубы для исследования гребных винтов

Дальнейшие сведения о гребном винте. Ветряк. Другие виды пропеллеров

Доклады раздела С Гребные морские винты

Кавитация гребных винтов

Момент гребного винта

Момент инерции — Графическое определение гребных винтов

Судовые гребные винты

Хромомарганцевая сталь — износостойкий материал для гребных винтов (А. В. Картышев)

Эрозия судовых гребных винтов



© 2025 Mash-xxl.info Реклама на сайте