Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пространства и их характеристики

Но термодинамическая вероятность не связана с тепловыми характеристиками системы, а лишь с механическими, такими, кик положение молекул в пространстве и их скоростями. Кроме того, в отличие от ранее рассмотренных функций состояния U, /), ш не аддитивна — увеличение количества вещества в системе не приводит к такому же увеличению функции fr,  [c.77]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]


В предыдущих главах мы обсуждали строение и физические характеристики твердых тел, рассматривая их явно или неявно как ансамбль сильно взаимодействующих частиц и полагая, что эта система частиц достаточно однородна (на расстояниях, существенно превышающих межатомные) и частицы системы распределены в пространстве одна относительно другой примерно одинаковым образом. Такой подход позволил выявить основные черты атомного и электронного строения твердых тел и связать их с физическими свойствами. В то же время и из физических представлений и из экспериментальных данных следует, что в зависимости от различных условий, например температуры, давления, тела могут находиться в различных состояниях. Более того, нет оснований утверждать, что при данных условиях в тепловом равновесии рассматриваемое тело обязательно должно быть однородным, а не состоять из нескольких соприкасающихся однородных частей, находящихся в различных состояниях. Такие состояния вещества, которые могут, соприкасаясь, существовать одновременно в равновесии друг с другом, называют различными фазами вещества. Очевидно, что различным фазам отвечают и различные физические свойства. Кроме того, свойства самих фаз меняются при из-  [c.248]

Так как звезда излучает энергию в окружающее пространство, то при равновесии внутри звезды должны быть источники энергии. Природа этих источников энергии и их распределение внутри звезды в настоящее время ещё не вполне ясны. Однако исследование равновесия звёзд при различных законах распределения источников энергии показывает, что распределение давлений и плотности внутри звезды и, в частности, их значение в центре звезды зависят слабо от закона распределения источников энергии. Расчёты показывают, что если принять распределение источников равномерным по всей массе звезды или принять, что то же количество энергии выделяется в одной точке — в центре звёзды, то характеристики состояния получаются близкими. К этому можно ещё добавить, что количество выделенной энергии за счёт физикохимических процессов очень чувствительно зависит от температуры. В центре звезды температура наибольшая, поэтому основная часть энергии выделяется вблизи центра звезды. Как показывают расчёты, это положение должно хорошо оправдываться в действительности ).  [c.286]

Превращение порошкового слоя при нагревании на твердой поверхности в монолитное покрытие — сложный многостадийный процесс. Феноменологическая модель формирования покрытия должна связать следующие параметры с одной стороны, временной ход температуры и давления в обжиговом пространстве и характеристики системы подложка—покрытие (форму и размеры частиц, их упаковку, реологические и поверхностные свойства частиц, подложки и их межфазной границы), с другой — характеристики образующегося слоя (толщину, шероховатость, пористость, геометрию краевой зоны и др.).  [c.27]


Диаграмма направленности феррозондов. Наряду с чувствительностью чрезвычайно важным параметром, или характеристикой, феррозонда является диаграмма направленности. Важность этой характеристики обусловлена тем, что в последние годы зонды стали все чаще использоваться именно для измерения компонент магнитного поля и углов (направляющих косинусов между какими-либо осями в пространстве и вектором магнитного поля). Если первоначально датчики использовались главным образом для оценки скалярной величины поля модуля полного вектора геомагнитного поля, то это объяснялось не тем, что их диаграмма направленности оказалась неудовлетворительной для оценки векторных величин, а тем, что отсутствовали надежные системы ориентации, которые можно было бы применять для стабилизации продольных осей феррозондов в заданных направлениях. Однако и возможность измерения скалярной величины поля базировалась на использовании направленных свойств двух других зондов, служащих датчиками следящей системы магнитометра.  [c.44]

Наиболее широкое применение в промышленности получили неразрушающие испытания методами радиографии (просвечивание рентгеновскими, гамма-лучами), ультразвуковой и магнитопорошковой дефектоскопии, контроль по магнитным и электромагнитным характеристикам, электроиндуктивный контроль с помощью вихревых токов и дефектоскопия проникающими жидкостями. В настоящее время неразрушающие испытания стали предметом специальной технической дисциплины — неразрушающей дефектоскопии. Для исследования космического пространства необходимо решать сложные задачи в области контроля материалов, конструкций и обеспечения их качества и надежности. В связи с этим значительно усовершенствуются ранее известные методы, применяются комплексные процессы неразрушающего контроля, включающие несколько разных методов для решения одной задачи, вместе с тем появились и принципиально новые методы неразрушающего контроля. Необходимость в новых методах была обусловлена внедрением новых материалов и производственных процессов и требованием по-  [c.256]

Как уже отмечалось, механика газов является средством для управления процессами горения и теплообмена, и поэтому организация движения газов в рабочих камерах печей имеет первостепенное значение. В современных печах движение газов в рабочем пространстве обычно осуществляется за счет динамического воздействия горелок, поэтому динамические характеристики горелок и их размещение на печи играют решающую роль. При рассматриваемом режиме теплообмена имеет также значение размещение отверстий для отвода продуктов горения.  [c.215]

В зависимости от характеристик каждого из упругих или вязких элементов и их конструктивной компоновки в пространстве величины обобщающих характеристик приобретают различные значения, причем суммарные (15) и моменты второй степени (17) только положительные, а статические (16) и центробежные (18) — любые, включая и нулевые.  [c.25]

В настоящее время известно ок. 1200 РС, а их общее число оценивается в десятки тысяч. РС образуют дисковую подсистему толщиной порядка 1 кнк. На высоких галактич. широтах они не встречаются, РС участвуют в общем галактич. вращении и движутся по слабо вытянуты.м орбитам. По своему пространств, распределению и кинематич, характеристикам они представляют собой типичное население диска Галактики или ее плоской составляющей.  [c.65]

Выше подробно исследовались дифракционные и поляризационные характеристики незаполненных ножевых решеток при сканировании поперек лент. Исходя из (5.15) ясно, что густые решетки, обладающие достаточно большим сектором сканирования в плоскости Ф= 90° Тх= 0), не дают аналогичных характеристик при сканировании в плоскости, близкой к Ф = 0. Стремление расширить сектор сканирования в этой плоскости за счет увеличения периода решетки может привести к ограничению на сектор сканирования в плоскости Ф =90°, связанному с возникновением новой гармоники Флоке либо с выполнением условия (5.16). Количественный и качественный анализ характеристик поляризатора в случае сканирования в полусфере наиболее полно удается провести на основе двухкоординатных зависимостей исследуемых величин в пространстве направляющих косинусов для заданной геометрии решетки и длины волны. Это позволяет дать рекомендации по выбору оптимальных значений параметров ИХ и 2h/l, обеспечивающих максимальный сектор сканирования (рис. 149, 150).  [c.213]


Если референтная и восстанавливающие волны плоские, но распространяются навстречу друг другу (Z = —Zj = —оо), то при реконструкции имеет место инверсия пространства вдоль оси 2. Изображения вновь формируются на одном и том же расстоянии, но их характеристики меняются основное изображение  [c.80]

Метод Лагранжа заключается в наблюдении за движением одних и тех же, мысленно отмеченных, частиц жидкости, проходящих через различные точки пространства, и, по существу, сводится к изучению траекторий этих частиц п прослеживанию во времени за изменением их кинематических характеристик.  [c.58]

Кинематические характеристики движущейся среды. Рассмотрим движение среды, т. е. изменение со временем положения частиц среды и их параметров состояния, в некоторой области трехмерного пространства векторов (точек) дг. Частицы среды движутся со скоростью У х, t), так что движение каждой частицы описывается уравнением  [c.30]

Так как нарастание момента при использовании толкателя ЭМТ-2 происходит более плавно, чем при электрогидравлическом толкателе, то время торможения механизма примерно на 25—30% больше при электромеханическом толкателе (рис. 2.37). Но динамические нагрузки на элементы механизма при использовании этого толкателя соответственно снижаются. Применение в толкателе ЭМТ-2 индукционного вспомогательного тормоза, не имеющего изнашивающихся частей, еще более улучшило характеристику толкателя так время опускания штока после выключения тока стало 0,2 с (вместо 0,3 с). Таким образом, разработанные тормоза с толкателями ЭМТ-2 являются наиболее быстродействующими, причем их характеристика практически не изменяется с изменением температуры и положения толкателя в пространстве.  [c.111]

В общем случае при расчете давления насыщенных паров смесей жидкости исходят из положения, согласно которому упругость пара над всякой жидкой смесью равна сумме парциальных упругостей ее составных частей. Однако поскольку это давление зависит также и от температуры, и от соотношения в смеси компонентов и их характеристики, расчет давления насыщенного пара жидкости, состоящей из двух и более компонентов, представляет известную сложность. Она обусловлена в основном тем, что в насыщенном паре смесей жидкостей содержится большее количество легко испаряющихся (более летучих) компонентов, чем в самой жидкости. По мере испарения жидкая фаза обедняется этими компонентами, а паровая фаза обогащается ими, причем обеднение жидкой фазы легкоиспаря-ющимися компонентами будет тем больше, чем больше объем парового пространства по отношению к жидкости. Вследствие этого и упругость насыщенного пара такой сложной жидкости будет тем меньше, чем выше отношение объемов паровой и жидкой фаз. Лишь при очень малых объемах паровой фазы по сравнению с объемом жидкости и обеднением смеси летучими компонентами можно пренебрегать.  [c.43]

Архитектурная среда складывается из сочетшптя смысловых акцентов -цептральпсио сооружения и символа выставки, отдельных павильонов, обладающих индивидуальной характеристикой, объектов обслуживания, малых форм, озе тсргения. Одним из условий проектирования является соотношение объемов и свободных пространств и их масштабность. При проектировании выставки следует учитывать условия зрительного восприятия объемов  [c.285]

Основные уравнения и их характеристики (133). Лемма о плотности (135). Теорема единственности (135). Времени и пространству подобные направления (137). Слабые разрывы (138). Транспортные уравнения (139). Задача о распаде слабого разрыва (141). Уравнения в ла-гранжевых координатах (142). Класс точных решений (144).  [c.4]

В статике рассматривались механические силовые взаимодействия материальных тел в равновесных их состояниях. В кинематике были установлены методы изучения происходящих в пространстве и во времени механических движений материальных тел и их систем, но вне связи с механическими взаимодействиями, обусловливающими эти движения. Динамика ставит целью изучение движения материальных тел в связи с механическими взаимодействиями между ними. При этом динамика заимствует у статики законы сложения сил и ириведеиия сложных их совокупностей к простейшему виду и пользуется принятыми в кинематике приемами описания движений. Задачей динамики является установление законов связи действующих сил с кинематическими характеристиками движений и применение этих законов к изучению частных видов движений. Лучше всего это сформулировано самим Ньютоном (1642—1726), создателем классической системы механики. Динамика должна, говорит он, по явлениям движения распознать силы природы, а затем по этим силам изъяснить остальные явления ). Эта формулировка точно передает сущность динамики и будет подробно разъяснена в дальнейшем.  [c.9]

Общий вид этих функций определяется свойствами пространства и времени. Главными свойствами пространства являются однородность — свойство сохранять неизменными характеристики пространства при переходе от одной точки к другой и изотропность — одинаковость свойств пространства по различным направлениям. Время также обладает свойствами однородности. Однородность времени есть одинаковость развития и изменения данной физической ситуации иезависнмо от того, в какой момент времени эта ситуация сложилась. Из однородности пространства и вре.мени следует, что преобразования должны быть линейными. Не останавливаясь на сравнительно несложном их выводе, приведем окончательный результат К  [c.214]

Поскольку отдельные фракции летучей золы имеют обычно отличающиеся друг от друга химические составы (см. рис. 1.2), то и их плавкостные, вязкостные характеристики различны (см. рис. 1.4, 1.5), что создает условия сепаратного закрепления отдельных частиц золы на поверхности. Это наибольшим образом отражается в различиях химических составов проходящего через топочное пространство среднего состава золы и золовых отложений на экранных иоверх-ностях нагрева.  [c.39]

Основные концепции континуальных теорий смесей основательно изучены в рамках современных теорий механики сплошных сред. В теориях смесей предполагается наличие двух или более сред в каждой точке пространства, поэтому общие законы сохранения для смесей сформулировать нетрудно, но практическое их применение к композиционным материалам сталкивается с определенными затруднениями, связанными с трудностями задания законов взаимодействия компонентов на основе информации об их взаимном расположении и физических характеристиках. Для слоистой среды теория смеси, в которой параметры взаимодействия компонентов были определены на основании решений некоторых простейших квазистатических задач, предложена в работе Бедфорда и Стерна [12]. Новизна теории Бедфорда и Стерна состоит в том, что допускаются различные движения компонентов смеси, причем связь между этими движениями определяется моделью взаимодействия компонентов в реальном композите. В работе Бедфорда и Стерна [13] развита общая термомеханическая теория, основанная на этой модели, а также выведена система уравнений, применимых к определенному классу армированных волокнами композитов (см. Мартин и др. [45]).  [c.380]


Вопрос О зависимости свойств манипуляционных систем (МС) от их геометрических параметров практически не изучен (исключение составляют работы [1, 2], в которых определены коэффициенты сервиса манипулятора с шестью степенями свободы для трех вариантов длин его звеньев, и работа [31, где рассмотрена задача минимизации геометрических размеров плоской трехзвенной MG при наличии препятствия в форме круга). В настоящей статье для плоской трехзвенной МС изучается влияние соотношения длин звеньев на количественные оценки ее достижимости и мани-пулятивности в свободном рабочем пространстве (РП). Строятся характеристики, описывающие свойство достижимости МС, когда в РП расположено препятствие типа коридор . Показано, что  [c.124]

Набор параметров плазмы, определяемых совр. методами Д. п., весьма велик. Определяются форма и местоположение плазмы, плотность (а=е, i, а) составляющих компонент (электронов, ионов, атомов, радикалов, фотонов) и их статистич. распределе11ия (по скоростям, по уровням возбуждения и т. п.), темп-ры Т , если распределения близки к равновесным, теплопроводность, интенсивность излучения, коэф. поглощения, частота столкновений компонент, коэф. диффузии и т. д. Исследование распределений этих параметров в пространстве и времени при заданных внеш. условиях позволяет выделить основные кинетич. и динамич. процессы, протекающие в изучаемой плазме, определить их скорости, энергетич, характеристики, найти способы управления значениями параметров плазмы.  [c.605]

КВАНТОВЫЕ ОСЦИЛЛЯЦИИ в магнитном поле — осцилляторкая зависимость термодинамич, и кинетич. характеристик металлов и вырожденных noAijnpoeodnuKoe от маги. поля. К. о, обусловлены вырождением системы носителей заряда и квантованием их энергии при пориоднч. движении по орбитам,. замкнутым в импульсном пространстве см. Ландау уровни).  [c.322]

Способы исследования П. ф. Свойства П. ф. можно, в принципе, определить из наблюдательных данных о совр. строении Вселенной. Практически наиб, важная информация об адиабатич. П. ф. с совр. масштабом А = (1 — 10 ) Мпк следует из вида корреляц. ф-ции галактик и их скоплений, характеристик крупномасштабной структуры Вселенной (нагш., распределения пустот — областей пространства, свободных от галактик,— по размерам) и из данных об угл, анизотропии темп-ры реликтового эл.-магн. излучения АТЦ (пока надёжно обнаружена только анизотропия дипольного типа). Гравитац. волны, возникшие из тензорных П. ф., также дают вклад в АТ/Т (этот эффект наиб, чувствителен к интервалу длин волн 10 —10 Мпк). Наконец, гравитац, волны с частотами, большими 10" Гц, можно искать как в прямых экспериментах (наиб, перспективным здесь является использование космич. лазерных интерферо-  [c.554]

При изучении топологич. свойств методами алгебраической Т. каждому (достаточно хорошему) пространству сопоставляется алгебраич. характеристика — линейное пространство, группа, кольцо и пр., причём это сопоставление (функтор) должно обладать свойством естественности или ковариантности отображениям топологич. пространств сопоставляются алгебраич. отображения (гомоморфизмы—см. Группа) их алгебраич. характеристик. Простейшим примером является фундаментальная группа пространства. Элементами фундаментальной группы п Х, Хо) пространства X с отмеченной точкой Хо являются гомотопические классы петель — замкнутых путей с началом и концом в точке Ло (в процессе гомотопии начало и конец пути должны оставаться  [c.146]

ЯДЕРНАЯ СПЕКТРОСКОПИЯ—раздел эксперим. ядерной физики, объединяющий методы исследования ядерных излучений а-, fS-частиц, 7-квантов, электронов внутр. конверсии (см. Конверсия внутренняя), а также протонов, нейтронов и др. частиц, возникающих при радиоакт. распаде и в ядерных реакциях. Определяются энергия частиц, их поляризация, пространств, и временные распределения. Цель исследований—определение спектра и квантовых характеристик ядерных состояний энергии, спина, чётности, магн. дипольных и квадрупольных моментов ядер, параметров деформации (см. Деформированные ядра) и др., а также вероятностей переходов между ядерными состояниями в зависимости от их квантовых характеристик. Получаемые методами Я. с. эксперим. данные при сравнении их с результатами теоретич. расчётов в рамках тех или иных ядерных моделей позволяют судить об осн. чертшс связи и движений нуклонов в ядре, что может быть выражено через структуру модельной волновой ф-ции ядра.  [c.656]

Однзко, несмотря на широ.кое раопрост1ранение вакуумных пасосов и важность улучшения их характеристик, теоретические работы по исследованию откачки воздуха паровой струей носят в основном качественный характер. Последнее связано главным образом с тем, что использованные методы расчета паровой струи ib вакууме основываются на идеализированной модели истечения пара, пе позволяющей рассчитать достаточно точно распределение параметров в струе. В частности, в опубликованных работах [Л. 1, >2, б] при расчете струи, истекающей в разреженную среду, не учитывается влияние разреженности пара на течение в сопле и для оценок скорости ст1руи и числа Мер (существенно влияющего на структуру струи) использованы соотношения газодинамики без учета вязкости. Тогда как для реальных насосов течение пара в сопле соответствует переходной области режима течения и скольжения (Re = =ilO - jO и М.= 2 -5), что неизбежно должно привести к резкому увеличению влияния вязкости на течение в сопле и к уменьшению числа М на срезе сопла по сравнению с идеальным значе нием, рассчитанным без учета вязкости. 6 настоящем докладе приводятся результаты исследования процессов, существенно влияющих на структуру струи пара в вакуумном пространстве насоса, а следовательно, и на откачку воздуха струей пара.  [c.445]

Электромагнитное поле считается известным, если в каждой точке пространства известны два вектора магнитной индукции В и напряженности электрического поля Е. Эти векторы (или величины, которые могут быть через них выра/ены) и являются характеристиками состояния в электродинамике. Однако при рассмотрении технических электромеханических устройств можно ограничиться случаем, когда бесконечное множество величин В и Е выражается через конечное число других величии, входящих ti уравнения электромеханических колебаний формально аналогично обобщенным координатам и скоростям в механике. Для этого должны выполняться условия, называемые условиями квазистационарноспш и состоящие в том, что можно не учитывать электромагнитные волны. Кроме того, поперечные размеры прово,"нпков должны быть малы по сравнению с их длиной (такие проводники и токи в них назы-нают линейными), исключение могут составлять проводники — обкладки конденсаторов. Сформулированным условиям удовлетворяют почти все технические электромеханические устройства.  [c.332]

Последнее замечание следует сделать относительно выбора координат. В предложенных к настоящему времени методах комбинированного анализа используется система координат Эйлера x,t), поскольку она применяется при рассмотрении контрольного объема. Можно применять и другие системы координат, а именно лагранжевы и псевдолагранжевы. Если сравнивать с этими двумя системами, то использование эй.теровых координат приводит к более громоздким расчетам при анализе одномерного нестационарного течения [66]. Как будет показано ниже, метод характеристик и метод узлов на самом деле связывают подходы Эйлера и Лагранжа, и связывающее соотношение можно найти, исходя из понятия поля параметров. Однако в данный момент мы определим различные координаты для одномерной системы. В рамках подхода Эйлера рассматривается постоянный объем в пространстве, и параметры рабочего тела, мгновенно занимающего этот объем, определяются таким образом, что нет необходимости следить за отдельными частицами газа. При использовании подхода Лагранжа рассматриваются отдельные частицы и прослеживаются их траектории в поле течения. В одномерной системе рассматривается слой газа (а не отдельные частицы) и переменная л заменяется другим параметром (скажем, а для данного слоя газа), который равен величине х при = 0, и, следовательно, значение а будет изменяться от частицы (слоя) к частице (слою). Псевдолагран-жева координата т данного слоя газа обозначает массу газа, содержащегося в объеме между этим слоем и исходным слоем при = о, и поэтому каждый слой имеет свое значение т, ко-  [c.344]


Для того, чтобы понять структуру пространства поиска, необходимо формализовать понятия (объекты, их характеристики и значения) и определить, как они могут связываться друг с другом при образовании гипотез, используемых для направления поиска. При этом необходимо ответить на следующие вопросы "являются ли понятия примитивными или они имеют внутреннюю структуру " "необходимо ли представлять причинные и пространственно-временные отнопшния между понятиями и должны ли они быть представлены явно " "необходима ли иерархия гипотез " "относится ли коэффициент определенности (или другие средства для выражения мнения) только к окончательным гипотезам или он необходим для промежуточных гипотез " "необходимо ли рассматривать понятия и процессы на различных уровнях абстракции "  [c.28]

Повышение производительности при сварке несколькими головками достигается при комплексной автоматизации ряда последовательно выполняемых операций. Так, при дуговой сварке — это подача и фиксация изделия в позиции сварки подвод головок в рабочее положение поиск свариваемого соединения (наведения сварочного инструмента на линию соединения до начала сварки) подача защитного газа или флюса в зону сварки зажигание дуги и выведение параметров режима сварки по заданной программе на требуемые значения стабилизация параметров режима сварки в заданных пределах или изменение их по заданной программе или в зависимости от положения в пространстве, а также от геометрических и других характеристик линии соединения свариваемых элементов в зоне сварки направление сварочного инструмента (электрода) на линию соединения во время сварки удаление шлаковой корки со шва (при сварке под флюсом) перед наложением замыкающих и пересекающихся участков швов изменение по заданной программе параметров режима сварки на каждой головке при выполнении замыкающих и пересекающихся участков швов прекращение сварочного процесса путем изменения параметров режима по заданной программе до нулевых значений удаление неиспользованного флюса и шлаковой корки с изделия отгвод головок в исходное положение вывод изделия на позиции сварки.  [c.39]

Одним из исходных пунктов динамической концепции Лейбница была констатация картезианское отождествление субстанции и протяженности, материи и пространства, тела и занятого им объема не дает возможности индивидуализировать тел.о, отличить части пространства (одно здесь от другого здесь ) и части времени (одно теперь от другого теперь ). По мнению Лейбница, тело отличается от пространства динамическими характеристиками, оно может действовать на другие тела и сопротивляться их воздействию. В 1691 г. в Письме по вопросу, состоит ли сущность тела в его протяженности , Лейбниц писал Я согласен с тем, что всякое тело естественно протяженно и что нет также протяжения без тел. Но тем не менее не следует смешивать понятий места, пространства и чистого протяжения с понятием субстанции, заключающим в себе, кроме протяжения, еще и сопротивление, т. е. действие и способтасть. тоявер азшкя  [c.385]

Методы описания потоков и их основные кинематические характеристики. При рассмотрении течения как несжимаемой, так и сжимаемой жидкости первоочередной интерес представляет определение поля таких кинематических характеристик потока, как поля скорости и ускорения. По этим полям могут быть определены поля и других параметров. Различают два аналитических метода описания кинематических характеристик потока — метод Лагранжа и. метод Эйлера. Следуя методу Лагранжа, в начальный момент времени фиксируют координаты интересующих частиц жидкости и затем рассматривают их движение во времени. Метод Лагранжа позволяет, следовательно, установить траектории фиксированных частиц. Метод Эйлера состоит в том, что в пространстве выделяются интересующие точки и исследуется изменение скоростей в этих точках в течение времени. Метод Эйлера позволяет выразить скорости в различных точках потока вне зависимости от того, какие частицы жидкости через них проходят. Метод Эйлера значительно больше приспособлен к специфике гидроаэромеханических задач, кроме того, он существенно проще метода Лагранжа. В связи с этим метод Эйлера получил преимущественное применение в гидроаэромеханике.  [c.39]

Наиболее общими характеристиками динамических процессов являются энергетические характеристики. Действительно, любую материальную систему, с позиций классической механики, можно полностью описать положением всех ее точек в пространстве и изменением этого положения во времени. При этом под пространством в общем случае следует понимать так называемое пространство конфигураций системы, обобщенные координаты которой и их первые производные по времени могут быть либо функционально связаны с декартовы- ми координатами, либо полностью от них не зависеть. Располагая некоторыми дополнительными данными о свойствах рассматриваемой системы, можно получить выражения для энергии в виде либо функции Лагранжа, либо функции Гамильтона, Зная эти величины и используя известные в механике вариационные принципы, мы прцдем к так называемым обобщенным уравнениям движения.  [c.32]

Отсюда следует, что для построения максимальной фигуры влияния многоразовой коррекции следует данную совокупность эллипсоидов влияния одноразовой коррекции обкатывать спрямляющей плоскостью. Полученная фигура определяет различную тактику коррекции в зависимости от направления корректируемого отклонения в пространстве корректируемых параметров. Спрямленные участки получившейся выпуклой фигуры соответствуют многоразовому включению двигателя (двухразовому на линейчатой поверхности, трехразовому на плоскости н т. д.), а участки, принадлежаш ие исходной совокупности эллипсоидов влияния, — однократному включению двигателя. Отсюда следует, что многоразовая импульсная коррекция может потребоваться лишь в случае, когда огибающая совокупности эллипсоидов влияния на рассматриваемом промежутке времени полета не всюду выпукла, — только тогда удут существовать спрямленные участки. Заметим, что не всюду выпуклая совокупность эллипсоидов влияния возможна лишь в случае немонотонной зависимости их характеристик от времени. В противном случае всегда существует эллипсоид, охватывающий все остальные эллипсоиды влияния.  [c.311]


Смотреть страницы где упоминается термин Пространства и их характеристики : [c.55]    [c.13]    [c.405]    [c.375]    [c.11]    [c.229]    [c.83]    [c.586]    [c.694]    [c.252]    [c.216]    [c.115]    [c.227]   
Смотреть главы в:

Структура механизмов и машин  -> Пространства и их характеристики



ПОИСК



1 кн. 209 — Технические характеристики для измерений в свободном пространстве — Блок-схема 1 кн. 210 — Преимущества 1 кн. 211 — Принцип действи

Исследование локальных гидродинамических характеристик продольно-поперечного течения в межтрубном пространстве пучков

Кайдаш И. Г., Олейник Г. Т. Исследование геометрических характеристик норового пространства покрытий, полученных газотермическим напылением

Некоторые другие формулы преобразования геометрических характеристик поверхности проективных преобразованиях пространства

Операторы перехода в пространстве коэффициентов фурье-разложений оптических характеристик

Расчет основных геометрических характеристик камер рабочего пространства теплотехнологических установок

Характеристика космического пространства

Характеристики размещения элементов структуры в пространстве



© 2025 Mash-xxl.info Реклама на сайте