Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип Даламбера и уравнения движения

V может иметь и скорость продольного движения w, например для случая, показанного на рис. 1.4. Каждый элемент участка стержня между точками Л и 5 имеет как переносную V, так и относительную V/ скорость. Выделив элемент стержня и воспользовавшись принципом Даламбера, получим уравнение движения для стержня постоянного сечения  [c.34]

Пример 10.3. Определим максимальное значение реакции N(t) (см. рис. 10.19, б), если /(г) <а. Воспользовавшись принципом Даламбера, получим уравнения движения балки и массы т  [c.441]


В качестве примера рассмотрим груз массы т (который будем далее считать материальной точкой), привязанный к нити ОМ длиной г и движущийся по окружности (рис. 373). На точку М действует реакция нити ЛГ (действием других сил, например силы тяжести, пренебрежем). Для составления уравнений движения воспользуемся принципом Даламбера и приложим к точке М. силу инерции У, разложив ее на касательную и нормальную составляющие Jx и Jп, при этом Л и направлены соответственно противоположно Wx и Wn,  [c.436]

В 1788 г. появилось сочинение Ж- Лагранжа Аналитическая механика , в котором вся механика была изложена строго аналитически на основе принципа Даламбера и принципа возможных перемещений. При этом Лагранжем были получены дифференциальные уравнения движения механической системы в обобщенных координатах. Дальнейшее развитие аналитических методов, предложенных Лагранжем для исследования движения и равновесия несвободных механических систем, привело к установлению ряда дифференциальных и вариационных принципов механики.  [c.16]

Обратим внимание на физическое содержание уравнений (3.8) и (3.9). Они выведены из закона количества движения системы, которая для случая сплошной среды образуется непрерывной совокупностью жидких частиц, составляющих объем W. Поэтому указанные уравнения можно рассматривать как специфические для жидкой среды формы уравнения количества движения. Но при сделанном предположении о постоянстве массы жидкого объема эти же уравнения можно вывести непосредственно из второго закона Ньютона или принципа Даламбера. Поэтому уравнения (3.8) и (3.9) можно также рассматривать как соответственно интегральную и дифференциальную формы второго закона Ньютона для жидкого объема. При этом левая часть уравнения (3.8) представляет собой суммарную инерционную силу, а правая — сумму действующих на массу жидкости внешних сил. В уравнении (3.9) правая часть выражает произведение массы на ускорение (силу инерции) для единичного объема, а левая — сумму действующих на него массовых и поверхностных сил.  [c.62]

Уравнения движения системы в промежутке времени — согласно принципу Даламбера и преобразованию Лагранжа, выражаются формулой  [c.459]

После того как во второй лекции мы получили лагранжевы уравнения движения для системы дискретных материальных точек, мы вывели из них в третьей лекции принцип Даламбера и из него принцип Гамильтона. С уравнениями, полученными нами теперь для движения тела, мы произведем действия, которые соответствуют тем, которые раньше привели нас к принципу Гамильтона. Обозначим, как это мы делали до сих пор, через к, у, г — координаты некоторой материальной точки тела в момент 1. а через Ьх, Ьу, Ьг — составляющие бесконечно малого возможного перемещения этой точки. Возможные перемещения здесь совершенно произвольны  [c.102]


Таким образом, в нашем распоряжении два пути к получению уравнений движения несвободной системы. Один путь тот, которым мы шли, а именно, сначала были составлены выражения для реакций связей, затем были написаны уравнения движения несвободной системы, а из них уже были получены как следствия принцип Даламбера и принцип виртуальных перемещений. Другой путь был бы следующий за основное положение принимается или выводится из какого-либо иного определения или условия принцип виртуальных перемещений следствием из него служит принцип Даламбера, а уже из последнего выводятся уравнения движения несвободной системы и выражения для реакций связей. Оба пути одинаково законны и правильны в обоих необходимо исходить из некоторого основного положения, явно или скрыто введённого в рассуждения. У нас, например, таким основным положением служит условие (30.9) на стр. 293  [c.355]

Тогда вал с k-м зубчатым колесом можно рассматривать как систему на упругих опорах / с податливостями /, . Воспользовавшись принципом Даламбера и обобщенным законом Гука, уравнения движения центра инерции k-ro зубчатого колеса представим в виде  [c.34]

Воспользовавшись принципом Даламбера и принимая во внимание закон построения матриц связи, уравнения движения динамической схемы запишем в виде  [c.62]

Дифференциальные уравнения движения расчетной модели любой механической системы (конструкции, сооружения и т. д.) можно получить на основании общих методов аналитической динамики. Для математического описания расчетной модели можно также использовать принцип Даламбера и методы обобщенных координат. Независимо от выбора метода составления дифференциальных уравнений движения системы их анализ зависит главным образом от выбора математической модели данной системы, которая может быть линейной, нелинейной, с постоянной и переменной структурой.  [c.6]

Равенство (ИЗ) представляет собою общее уравнение динамики. Из него вытекает следующий принцип Даламбера — Лагранжа при движении системы с идеальными связями в каждый данный момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю.  [c.449]

Даламбер, Эйлер, Лагранж создали принцип, основанный на сравнении движений. Этот принцип изучает мгновенное состояние движения и возможные отклонения от этого состояния, допускаемые связями в данный момент времени (возможные перемещения). Для механических систем с голономными идеальными связями из этого принципа непосредственно следуют уравнения движения системы материальных точек — уравнения Лагранжа второго рода.  [c.500]

Второе уравнение, которое называется уравнением движения (или уравнением Навье-Стокса), представляет собой специальную форму выражения принципа Даламбера. Этим уравнением утверждается, что если к совокупности сил, действующих на элемент жидкости, присоединить инерционную силу (равную и обратную по знаку произведению из массы элемента на его ускорение), то получится система, находящаяся в равновесии.  [c.336]

Прежде всего рассматривается задача о равновесии системы (статика системы), решение которой дается на основе принципа возможных перемещений. Вводится понятие обобщенных сил и формулируются аналитические условия равновесия. Здесь же можно кратко рассмотреть вопрос об устойчивости равновесия. Далее, как обычно, рассматривается принцип Даламбера и выводятся уравнения Лагранжа 2-го рода. Тем самым указывается метод решения основных задач динамики несвободной системы. Здесь же рассматриваются некоторые другие вопросы. Две системы активных сил, приложенных к определенной системе точек, называются эквивалентными, если их обобщенные силы совпадают при каком-нибудь выборе обобщенных координат (или если они выполняют одинаковую работу на любом возможном перемещении). Это определение вытекает из того факта, что активные силы входят в уравнения движения только через обобщенные силы, вследствие чего замена системы сил ей эквивалентной не сказывается на движении. Следует иметь в виду, что две эквивалентные в указанном смысле системы сил могут вызывать, конечно, различные реакции связей. Но в ряде задач эти реакции не представляют интереса и это различие можно игнорировать. Если это не так, то с помощью принципа освобождаемости реакции связей следует перевести в разряд активных сил.  [c.75]


Мы подчеркивали, что принцип Даламбера позволяет находить динамические реакции и напряжения, если известен закон движения если же он неизвестен, то при помощи этого принципа МОЖНО составить уравнения движения. Например, в некоторых случаях МЫ можем это сделать на основании формул этой главы приведем примеры.  [c.100]

В случае простого математического маятника (рис. 101), применив принцип Даламбера и спроектировав вес и силу инерцни на направление касательной тп, получим уравнение движения  [c.126]

При составлении уравнений движения исходят из принципа Даламбера, который состоит в том, что к движущейся с ускорением системе могут быть применены уравнения статики при условии, что в число внешних сил включена фиктивная сила инерции, равная произведению массы на ускорение и направленная против ускорения.  [c.299]

Математически принцип Даламбера для системы выражается п векторными равенствами вида (85 ), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.  [c.345]

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. 141).  [c.345]

Применение уравнений (88), вытекающих из принципа Даламбера, упрощает процесс решения задач, так как эти уравнения-не содержат внутренних сил. По существу уравнения (88) эквивалентны уравнениям, выражающим теоремы об изменении количества движения и главного момента количеств движения системы, и отличаются от них только по форме.  [c.346]

Рассмотрим малые колебания амортизированного объекта (рис. 10.7, а), имеющего массу т. Для вывода уравнения движения амортизированных систем можно использовать принцип Даламбера. В произвольный момент времени t при значении текущей координаты 2 на массу т действует реакция Z(z,z) амортизатора. Приравнивая нулю сумму сил, приложенных к массе т, и силы инерции mz в соответствии с (10.8), получаем дифференциальное уравнение движения массы т  [c.277]

Таким образом, принцип Даламбера дает общи] прием составления уравнений, необходимых для решения задачи динамики системы, причем эти уравнения имеют ту же форму, что и уравнения статики. Этот прием оказывается особенно полезным при решении тех задач, в которых требуется найти динамические реакции связей, т. е. реакции, возникающие при движении системы.  [c.371]

Уравнение (3.14) представляет собой уравнение движения, записанное в форме уравнения статики. Принцип Даламбера можно сформулировать следующим образом в любой момент движения сумма активной силы, реакции связи и силы инерции равна нулю.  [c.51]

Вектор / называют силой инерции, а уравнение (6.1) является уравнением равновесия статики и выражает принцип Даламбера если в каждый данный момент к действующим на тело силам прибавить силу инерции, то полученная система сил будет находиться в равновесии, и для нее справедливы все уравнения статики. Принцип Даламбера позволяет при решении динамических задач составлять уравнения движения в форме уравнений равновесия и решать задачи динамики с помощью более простых законов статики. При этом нужно иметь в виду, что фактически на данное тело действует только сила Р, а сила инерции Д, приложена к другому (ускоряющему) телу, которое воздействует силой Р на ускоряемое тело.  [c.59]

Р е щ е н и е. Колебание отдельной материальной точки под действием силы тяжести (математический маятник) было изучено выше (см. определение 3.9.1). В рассматриваемом примере имеются две материальные точки, описывающие дуги различных радиусов за одно и то же время. Следовательно, каждая точка должна влиять на движение другой. Применив принцип Даламбера, эту динамическую задачу можно свести к обычной задаче статики, которая, будучи решенной, дает дифференциальные уравнения движения. Пусть ОА — а, ОВ = 6 и угол, образованный стержнем с вертикалью Ог, равен (9. Точка А описывает дугу окружности. Компоненты ее ускорения имеют вид  [c.377]

Заметим, что уравнения движения свободных систем и принцип затвердевания можно получить, используя принцип Лагранжа — Даламбера, путем наложения на механическую систему дополнительных связей и не прибегая к необходимым уравнениям движения свободных механических систем, как это было сделано ранее.  [c.65]

В задаче о двил<еиии точки член —ша представляет эффект действия силы F, в то время как в задаче об уравновешенности сил, действующих на точку, член —та представляет силу, которую надо приложить к точке, чтобы уравновесить силу F. Это отличие не находит своего отражения в уравнениях. Таким образом, формально принцип Даламбера позволяет (свести задачу о движении точки к задаче о равновесии действующих на нее сил и сил инерции. Переходя к системе материальных точек с идеальными связями, запишем принцип Даламбера для каждой точки системы р. виде  [c.115]


Принцип Гамильтона. Выводя в предыдущей главе уравнения Лагранжа, мы рассматривали мгновенное состояние системы и небольшие виртуальные изменения этого состояния Таким образом, мы исходили из дифференциального принципа каким является принцип Даламбера. Однако уравнения Лаг ранжа можно получить и из другого принципа, в котором рас сматривается движение системы за конечный промежуток вре мени и небольшие виртуальные изменения движения в этом промежутке. Принципы такого рода известны как интегральные принципы .  [c.42]

Применение принципов. Рассмотренные нами принципы применяются главным образом, для получения уравнений движения (в частном случае, равновесия) произвольных несвободных материальных систем. В виле примера выведем с помощью принципов Даламбера и Гамильтона уравнение движения для твйрдого тела, вращающегося вокруг неподвижной прямой. Примем ату прямую за ось Oz неподвижных осей координат Oxyz и за ось ОГ подвижных осей 0 rif, неизменно связанных с телом. За обобщённую координату тела примем угол <р между осями Ох и Oi. Возьмём сперва принцип Даламбера имеем  [c.370]

Принцип Даламбера для относительного движения формулируется следующим образом уравнения динамики для относительного движения формально совпадают с уравнениями равновесия этой системы, если к действующим внешним силам, внутренним силам и реакциям связи добавить фиктивные (даламберовы) силы инерции относительного движения, а также переносные и кориолисовы силы инерции.  [c.35]

Хотя проблемы, которые мы будем изучать, являются главным образом статическими, мы обобщим излагаемые методы на случай применения их к динамическим задачам путем использования принцица Даламбера, т. е. добавления, кроме действительных сил, которые воздействуют на тела и обусловлены действием других тел либо путем контакта, либо действием на расстоянии, еще так называемых инерционных сил - и трактовки их как действительных сил, каковыми они, конечно, не являются. Таким образом, при обсуждении уравнений равновесия будет в дальнейшем подразумеваться, что в них включены и уравнения движения, а в число действующих сил будут включаться с помощью принципа Даламбера инерционные силы.  [c.13]

Общие соображения. Рассмотренные выше величины (силы, напряжения, перенос, вращение, деформация, скорость деформации и т. п.) необходимы для описания динамического и кинематического состояний элементарной частицы среды и могут быть названы механическими переменными. Они связаны, как мы знаем, только тремя уравнениями движения (4.1). Для построения замкнутой феноменологической теории движения сплошной среды должна быть также известна связь между динамическим и кинематическим состояниями частицы. Совокупность таких соотношений можно назвать механическими уравнениями состояния их необходимо отличать от уравнений движения (4.1), являющихся следствием принципа Даламбера и описывающих не суиГественную для состояния вещества механику переноса и вращения частицы среды.  [c.25]

В первых семи лекциях Якоби выводит уравнения динамики системы из принципа Даламбера и, пользуясь этим принципом, устанавливает интегралы движения центра тяжести, интегралы площадей и интегралы живых сил в этих же neyfe х лекциях дается изложение принципа наименьшего действия с разъяов м условий о действительном достижении интегралом дей-  [c.17]

В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]

Эквивалентность уравнений Пуанкаре различным видам уравнений движения. Ранее [14-16] прямыми вычислениями была показана эквивалентность уравнений Пуанкаре движения неголономных систем уравнениям Чаплыгина, Аппеля, Гамеля, Воль-терры, Ферреса и некоторым другим уравнениям. Эквивалентность уравнений движения в квазикоординатах уравнениям Аппеля, а также уравнениям Чаплыгина была доказана в [40] выводом этих групп уравнений из принципа Даламбера-Лагранжа. Уравнения Воронца выведены из уравнений Пуанкаре (5.6) в [21] (см. пример 3.1.1).  [c.35]

Отвечая на возражения Декарта, Роберваль подвергает критике метод определения этой точки, предложенный Декартом, и предлагает свой метод определения аналогичной точки, названной им центром удара (per ussion). К сожалению, взаимные упреки не способствовали решению проблемы и оставили ее открытой. И только решение Гюйгенсом, а позднее Я. и И. Бернулли, Лопиталем, Германном задачи о центре колебаний стало импульсом для создания теории механических колебаний и привело к пополнению арсенала механики новыми понятиями (в том числе, осевого момента инерции тела) и принципом построения динамических уравнений движения, ставшим прообразом принципа Даламбера.  [c.61]

Принцип Даламбера. Общее уравнение механики. Дифференциальные уравнения движения несвободной материальной точки и системы могут быть представлены в форме уравнений равновесия системы сил. Впервые на это обстоятельство было указано Далам-бером.  [c.176]

Отметим еще следующее. Если на точку действует некоторая сила F, то эта сила есть результат взаимодействия точки с каким-то другим телом. При этом по третьему закону Ньютона на данное тело будет со стороны точки действовать сила Q = — F (сила противодействия). С другой стороны, если мы будем применять к точке, движущейся под действием силы F, принцип Даламбера, то, вводя силу инерции J, получим, согласно уравнению (88), F- -J = 0 или J= — F. Отсюда следует, что J=Q, т. е. что сила инерции равна как вектор силе противодействия. Однако эти две силы не следует отождествлять. Сила Q есть сила, реально действующая на тело, с которым взаимодействует движущаяся точка, и равенство Q = —F выражает соотношение, вытекающее из закона действия и противодействия (уравновешивать силу F сила Q не может, так как эти силы приложены к разным телам). Сила же У = — mw, на движущееся тело (или точку) не действует, а равенство F- -J—0 вырамсает в статической форме уравнение движения точки, находящейся под действием только силы F. Эти рассуждения относятся и к случаю, когда на точку действует несколько сил, если под F понимать их равнодействующую, а под Q — геометрическую сумму сил противодействия.  [c.437]


Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Реакции геометрических связей можно исключить из уравнений движения, если воспользоваться обобщенными координатами. Пользуясь принципом освобождаемости связей, переведем реакции кинематических связей в класс активных сил, тогда число стеггеней свободы механической системы 3 п—а. Воспользуемся принципом Лагранжа — Даламбера, который справедлив для систем с идеальными связями, и уравнениями (51.23), в которых члены с множи-  [c.76]

Равенство Р + Ф = 0 составляет содержание принципа Даламбера при движении точки действуьощие на нее сила F и сила инерции Ф удовлетворяют уравнению равновесия сил.  [c.115]

Аналогично выражаются через проекции ускорения на прямоугольные оси координат проекции силы инерции Ф , Фу, Ф . О силах инерции существует несколько точек зрения. Согласно первой точке зрения сила инерции условно прикладывается к точке, чтобы уравнению движения (44) придать более удобную форму условия равновесия (45). Поэтому силу инерции Ф называют фиктивной, даламберовой, условной и т. д. С этой точки зрения силы инерции в принципе Даламбера не являются настоящими, реальнь ш силами и отличаются не только от обычных сил, создаваемых действием тел, но даже и от сил инерции в относительном движении.  [c.342]


Смотреть страницы где упоминается термин Принцип Даламбера и уравнения движения : [c.183]    [c.2]    [c.403]    [c.574]    [c.13]    [c.115]   
Смотреть главы в:

Динамика системы твёрдых тел Т.1  -> Принцип Даламбера и уравнения движения



ПОИСК



Вариационный принцип ДАламбера-Лагранжа в задаче о движении идеальной несжимаемой жидкости Поле реакций связей. Уравнение Эйлера

Вывод уравнений движения твёрдого тела из принципа Даламбера

Даламбер

Даламбера принцип

Движение свободного твердого тела Поле реакций связей. Принцип ДАламбера—Лагранжа Уравнения движения

Динамика. Дифференциальные уравнения движения точки. Принцип Даламбера

Дифференциальные уравнения движения несвободной материальной точки и принцип Даламбера для материальной точки

Принцип Даламбера. Дифференциальные уравнения движения Лагранжа

Уравнение Даламбера



© 2025 Mash-xxl.info Реклама на сайте