Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа преобразование

Известно, что уравнения Гамильтона инвариантны относительно более общих по сравнению с уравнениями Лагранжа преобразований и что из уравнений Гамильтона вытекает закон сохранения энергии также 1В более общем виде.  [c.36]

Основным достоинством методов скользящего допуска является то, что независимо от выполнения условия (П.37), на каждом шаге решаются экстремальные задачи оптимизации без ограничений (минимизация T(Zh) или оптимизация //о(2д). Хотя методы преобразования задач с помощью множителей Лагранжа или штрафных функций также сводятся к оптимизации без ограничений, тем не менее поиск со скользящим допуском на ограничения приводит быстрее к цели. Эффективные алгоритмы поиска по методу скользящего допуска с использованием комплексов для определения направления движения описаны в [80].  [c.253]


Лагранжа. В общем случае кинетическая энергия является функцией q я q, г если преобразование (9) нестационарно, то также и t  [c.142]

Утверждение, обратное принципу Гамильтона, важно и по другой причине оно позволяет установить, как изменяется лагранжиан при преобразовании координат и времени, и тем самым разъяснить, что собственно имеется в виду, когда утверждается, что уравнения Лагранжа ковариантны по отношению к таким преобразованиям. Рассмотрим преобразования  [c.280]

Легко показать, что экстремаль является инвариантом преобразований, т. е. если преобразования (62) выполняются одновременно над кривой пучка, представляющей собой экстремаль, и над функционалом, то преобразованная кривая остается экстремалью для преобразованного функционала. Отсюда и из обратного утверждения принципа Гамильтона (см. выше) сразу следует, что преобразованный прямой путь удовлетворяет уравнениям Лагранжа с лагранжианом L, который определяется по формуле (64).  [c.281]

Таким образом уравнения Лагранжа ковариантны по отношению к любым преобразованиям координат и времени вида (62),  [c.281]

Разумеется, как в том случае, когда время не преобразуется и L может быть вычислен по формуле (65), так и в том случае, когда время преобразуется и L вычисляется по формуле (64), новый лагранжиан (как функция новых переменных), вообще говоря, отличается от старого лагранжиана (как функции старых переменных). Именно поэтому мы говорим о ковариантности (а не об инвариантности) уравнений Лагранжа по отношению к любым преобразованиям вида (62). Но, разумеется, среди преобразований (62) содержатся и преобразования специального вида, такие, что для них L как функция новых переменных имеет совершенно такой же вид, что и L как функция старых переменных, т. е.  [c.282]

Далее мы получим два закона сохранения, имеющие место при рассмотрении замкнутых систем. В связи с этим сделаем следующее общее замечание. Требование замкнутости системы означает, что все силы, действующие на материальные точки системы, зависят лишь от взаимного расположения точек и расстояний между ними. В связи с этим любые преобразования координат, сохраняющие взаимное расположение точек и расстояния между ними, не изменяют уравнения движения, т. е. не меняют вид лагранжиана.  [c.291]

Из структуры уравнений (4.4) видно, что если вместо функции L выбрать другую функцию Li — L+ /(/), где f t)—любая функция времени, то функция Li тоже будет удовлетворять уравнениям (4.4). То же самое будет, если вместо L взять Li = L, где с — любое постоянное число, кроме нуля. Существуют и другие преобразования, относительно которых уравнения Лагранжа инвариантны ).  [c.95]


Следствие 8.10.1. Пусть функция Лагранжа не изменяет своего вида при преобразованиях координат  [c.592]

Действительно, поскольку вид функции Лагранжа не изменяется при преобразовании с матрицей 5, то 5и — собственный вектор, соответствующий значению Л, а так как А — простой корень, то эти собственные векторы коллинеарны  [c.592]

Для дальнейшего преобразования используем тождество Лагранжа, полученное при выводе уравнений Лагранжа [формула (83), 6, гл. 6[  [c.400]

Система, начало, оси, задание, определение, нахождение, преобразование, дифференцирование, число, вариации, начальные возмущения, точечное преобразование. .. координат. С помощью, в качестве. .. координат. Понятие. .. о координатах. Зависимость, соотношения. .. между координатами. Принцип Лагранжа. .. в обобщённых координатах. Вектор. .. обобщённых координат.  [c.32]

Обобщённый импульс в аналитической динамике выражается через функцию Лагранжа или через кинетическую энергию. 2. Каждому бесконечно малому преобразованию, вызывающему изменение лагранжиана, соответствует постоянная движения стационарной механической системы в потенциальном поле сил.  [c.97]

Во втором томе учебника будет дан вывод уравнений Лагранжа второго рода, основанный на преобразовании общего уравнения динамики. Этим способом получения уравнений Лагранжа второго рода можно ограничиться, если преподавание ведется по сокращенной программе.  [c.13]

Рассмотрим движения систем, на которые наложены неголономные связи. В предыдущей главе уравнения движения систем при наличии неголономных связей подробно не рассматривались. Дело в том, что в этих случаях метод Лагранжа связан с необходимостью применения систем координат, в которых число дифференциальных уравнений движения превышает число степеней свободы системы. Разность между числом дифференциальных уравнений движения и числом степеней свободы системы равна числу неголономных связей, наложенных на точки системы. Основным содержанием настоящей главы является рассмотрение некоторых особых способов преобразования дифференциальных уравнений движения, которые позволяют описать движение материальной системы с неголономными связями системой дифференциальных уравнений, число которых равно числу степеней свободы системы.  [c.151]

Линейные преобразования, выполняемые для приведения к каноническому виду кинетической и потенциальной энергий, не отражаются на главных частотах. Это утверждение, с одной стороны, основывается на общей теории квадратичных форм, а с другой — вытекает из теории линейных дифференциальных уравнений. Действительно, непосредственно видно, что, построив общее решение системы дифференциальных уравнений Лагранжа второго рода в координатах 0у, можно найти общее решение уравнений движения в исходных координатах ри применяя формулы линейного преобразования координат. При этом решения характеристического уравнения — главные частоты — не изменяются ).  [c.252]

Замечание. Изучение движения твердого тела в случае, рассмотренном Лагранжем, можно произвести, основываясь непосредственно на дифференциальных уравнениях Лагранжа второго рода. При этом оказывается, что координаты ф и ф — циклические. Поэтому далее можно применить преобразование Раута ( 122).  [c.431]

Но пространство в деформируемой среде, отнесенное к координатам Лагранжа, связано с евклидовым пространством, отнесенным к координатам Эйлера, формулами точечного преобразования (IV. 79), которые, по предположению, взаимно однозначны. Следовательно, и в деформированной среде можно ввести евклидову метрику, т. е. пространство в деформированной среде является евклидовым.  [c.504]

Лагранжа переменные 330 Линейное преобразование векторов 115, 116  [c.348]

Преобразование сумм, стоящих в правых частях этих равенств, производилось в 159 при выводе уравнений Лагранжа второго рода повторив этот вывод, получим  [c.575]


Умножим уравнения Лагранжа с множителем Я соответственно на dx, dy, dz и сложим. После очевидных преобразований  [c.112]

Зададимся вопросом вывести теорему живой силы из уравнения Лагранжа. С этой целью умножим (4.21) на q после простого преобразования получим  [c.124]

Вставляя эти значения возможных перемещений в принцип Эйлера — Лагранжа, имеем после некоторых преобразований  [c.148]

Закон сохранения массы позволяет получить полезное для последующих преобразований соотношение. Вспомним сначала понятие субстанциональной производной. Это понятие соответствует методу описания движения сплошной среды по Лагранжу. Пусть индивидуальная дифференциально малая масса вещества в момент времени t находится вокруг точки x (t) пространства. В следующие моменты времени контрольная масса занимает другие области пространства, причем X/ (t) могут всюду рассматриваться как координаты контрольной массы. Если состояние вещества характеризуется величиной В (плотность, внутренняя энергия, температура и т.д.), то для лагранжевой контрольной массы  [c.21]

Излагаемые ниже преобразования и теоремы применимы только в том случае, когда проекции X, К, Z равнодействующей заданных сил, приложенных к точке, суть частные производные функции и 1, X, у, а), которая может содержать явно время 1. Уравнения Лагранжа будут тогда иметь вид  [c.466]

Резюме. Канонические уравнения инвариантны относительно точечного преобразования Лагранжа. Преобразование импульсов происходит с учетом инвариантности дифференциальной формыФункция Гамильтона является инвариантом преобразования, если новая система координат покоится относительно старой. В противном случае функция Гамильтона изменяется за счет гироскопических членов.  [c.233]

В качестве простейших следствий теорема Нётер содержит классические способы интегрирования уравнений Лагранжа. Преобразованию  [c.75]

Задача п точечных вихрей. Не следует думать, ч. уравнения Гамильтона появляются в механике лишь в результате применения к уравнениям Лагранжа преобразования Лежандра. Рассмотрим плоское стационарное течение идеальной несжимаемой жидкости. Пусть v=(a x, у), Ь х, i/))—поле скоростей ее частиц в декартовых координатах х, у. Из условия несжимаемости divt = 0 следует, что 1-форма ady—bdx является дифференциалом некоторой функции Yix, у). Уравнение движения частицы жидкости можно представить тогда в виде уравнения Гамильтона  [c.36]

Метод прямого вычисления скобок Лагранжа. Преобразования, которые требует метод предыдущего параграфа, очень сложны, и прямое вычисление скобок, хотя гоже довольно сложно, с практической точки зрения является предпочтительнее. В преоб >азованиях этого рода. ножно избегнуть всего вычи -.гения, употребляя канонические переменные, ио для их употребления необходимо длинное отступ.тение относительно свойств канонической системы, что выходит за пределы данной работы ). Однако трудность может быть заметно уменьплена, беря сначала элементы, несколько отличающиеся от определенных в главе V,  [c.341]

Приняв лагранжев спектр турбулентности, Чен рассмотрел стационарный ) случай, когда начальный момент временя о равен — схз. В. лагранжевой системе координат прослеживается путь частицы и отмечаются статистически осредненные характеристики потока II твердой частицы. Первоначальная методика Чена была модифицирована Хинце в отношении определения интенсивностей и коэффициентов диффузии. Эти теоретические методы, а также методы Лью [497], Со/ [721 [, Фрпдлендера [232] II Ксенеди [134] были обобщены Чао [104] путем рассмотрения приведенного выше. лагранжева уравнения движения как стохастического, к которо.му внача.ле при.меняется преобразование Фурье. Излагаемый ниже метод принадлежит Чао.  [c.50]

Применительно к системе без механических связей уравнения Лагранжа имеют одно основное преимущество они ковариантны по отношению к точечным преобразованиям координат. В случае же, когда система стеснена механическими идеальными связями, применение лагранжева формализма имеет дополнительные пре имущества по сравнению с непосредственным применением урав нений Ньютона. Оно позволяет уменьшить порядок системь уравнений, описывающих движение, до 2п, где л —число степе ней свободы, и избежать определения реакций идеальных связей Возможность выписать уравнения движения, не интересуясь нор мальньши реакциями и вообще подсчетом реакций в случае, когда трение отсутствует, является одним из важных преимуществ применения лагранжева формализма к механическим системам со связями.  [c.156]

Уравнения движения, записанные в ковариантной форме (уравнения Лагранжа), имеют одинаковый вид в любой системе отсчета и поэтому в равной мере пригодны для описания движения в инерциальных и в неинерциальных системах. Для того чтобы описать движение материальной точки по отношению к неинерциальной системе отсчета, надо лишь в качестве новых координат принять отрюсительные ( греческие ) координаты неинерциальной системы. Заданное переносное движение определяет тогда все функции ф,- и г ),-, т. е. преобразование (8) новых ( гре-  [c.160]

До сих пор в основе всех наших рассуждений лежали некоторые исходные представления, играющие во всем последующем построении роль аксиом. Мы постулировали, в частности, второй закон Ньютона и при гыводе основ ых законов и теорем механики всегда исходили из него. В настоящей главе, выводя уравнения движения в форме, ковариантной по отношению к любым точечным преобразованиям координат, мы также положили в основу рассуждений второй закон Ньютона и в конечном результате придали ему форму уравнений Лагранжа. В этом смысле второй закон Ньютона оказывается эквивалентным утверждению о том, что движение может быть описано уравнениями (22), а движение в потенциальном поле — уравнениями (29), где L = T—К.  [c.164]


Непосредственно видно, что преобразование (78) удовлетворяет условиям 1° и 2°. Лагранжиан (так же как и гамильтониан) консервативной системы не зависит явно от времени, а dt = dt, т. е. функция d jdt в данном случае равна единице. Поэтому преобразование (66) заведомо не меняет вид лагранжиана (и, разумеется, гамильтониана) и из теоремы Нётер следует, что консервативная система должна иметь первый интеграл вида (69). Но в данном случае все функции qiy в силу преобразования (78) тождественно равны qj, т. е. не зависят от а, и, следовательно, производные от них по параметру а равны нулю, а д- 1да= и формула (69) принимает вид  [c.290]

В связи с тем, что при сдвиге начала координат вдоль какой-либо оси расстояние между точками системы не меняется, не меняется и потенциальная энергия системы, а значит, и функция Лагранжа. Очевидно, преобразование (80) удовлетворяет условиям 1° и 2°. Таким образом, все условия, которые теорема Нётер накладывает на однопараметрическое семейство преобразований, выполнены. В силу этой теоремы имеет место первый интеграл (69). В данном случае все d fi/da для координат у и г, так же как и д 1да, равны нулю, а функции ф, для координат х таковы, что дц>11да—. Поэтому в формуле (69) член, содержащий гамильтониан, обращается в нуль, а оставшаяся в правой части  [c.291]

TO вид уравнений Лагранжа и Гамильтона останется прежним. Преобразование кородинат (5.31) называется точечным.  [c.137]

Равенства (IV. 79) можно рассматривать как формулы точечного преобразования, позволяющие поставить в соответствие точке N( / ) деформированного пространства, арифметизирован-ного координатами Лагранжа, точку М(х ) пространства, ариф-метизированного координатами Эйлера, Мы будем предполагать, что такое соответствие взаимно однозначно и функции гс непрерывны и дифференцируемы.  [c.503]

Первые иитегралы (3.11) можно использовать для преобразования уравнений Лагранжа для позиционных координат. Это преобразование принадлежит Раусу и носит его имя. Не останавливаясь на выводе (см., например, [38, 49]), приведем только результаты.  [c.83]

Составлениё дифференциальных уравнений движения сложной гироскопической системы с помощью второго метода Лагранжа не требует отыскания моментов реакций связей и, следовательно, глубокого анализа физики явлений, происходящих при движении системы, а сводится к выполнению ряда формальных математических преобразований.  [c.126]

Здесь варьируются независимо напряжения о и перемещепи>1 щ. Функционал Лагранжа, записываемый через и деформации ij, выраженные через Ut по формулам (12.2.1), послужил отправной точкой для всех выводов. Прямое распространение на геометрически нелинейные задачи вариационного принципа типа Кастильяно невозможно. Действительно, в линейной теории было использовано то обстоятельство, что беу выражается через Ьщ по тем же формулам, по которым б ,- выражаются через Uu Поэтому преобразование объемного интеграла можно было произвести до варьирования функционала. В нелинейной теории этого сделать нельзя.  [c.392]

Масса каждой точки ttiv может изменяться в функции обобщенных координат q,, обобщенных скоростей qi и времени t. После выполнения дифференцирования, суммирования и обычных преобразований, применяемых при выводе уравнений Лагранжа, получаем уравнения Лагранжа второго рода для систем с переменными массами  [c.301]


Смотреть страницы где упоминается термин Лагранжа преобразование : [c.571]    [c.86]    [c.129]    [c.282]    [c.387]    [c.287]    [c.40]   
Теория механизмов и машин (1979) -- [ c.166 ]



ПОИСК



Аффинные преобразования окрестности точки (69, 70). Тензор деформации лагранжева базиса

Единственность в конфигурационном пространстве Уравнение Лагранжа Лагранжевы системы Геодезические потоки Преобразование Лежандра Примеры геодезических потоков

Основная теория для консервативных систем Неконсервативные системы. Канонические преобразования в QP. Скобки Пуассона и скобки Лагранжа

Преобразование Лежандра в применении к функции Лагранжа

Преобразование уравнений Лагранжа

Преобразование уравнений движения Лагранжа

Преобразование центрального уравнения Лагранжа

Преобразования точечные Лагранжа

Различные варианты принципов Лагранжа и Кастильяно — исходные пункты для преобразования вариационных принципов

Различные варианты принципов Лагранжа и Кастильячо — исходные пункты для преобразования вариационных принципов

Скобки Пуассона и Лагранжа бесконечно ма лые преобразования

Уравнения движения Лагранжа и их инвариантность относительно точечных преобразовании

Условие каноничности преобразования, выраженное через скобки Лагранжа и скобки Пуассона

Условия для контактного преобразования, выраженные через скобки Лагранжа

Условия контактного преобразования, записанные через скобки Лагранжа и скобки Пуассона

Условия контактности преобразования, скобки Лагранжа



© 2025 Mash-xxl.info Реклама на сайте