Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие свойства уравнений Навье — Стокса

Общие свойства уравнений Навье — Стокса  [c.75]

ОБЩИЕ СВОЙСТВА УРАВНЕНИЙ НАВЬЕ — СТОКСА [ГЛ. IV  [c.76]

С чисто математических позиций уравнения Навье-Стокса относится к классу нелинейных дифференциальных уравнений в частных производных второго порядка. Одно из наиболее неприятных из их свойств - нелинейность, обусловленная наличием конвективных членов ускорения. Следует отметить, что до настоящего времени вследствие практически непреодолимых математических трудностей не получено ни одного общего решения уравнений Навье-Стокса в их полном виде, т.е. при сохранении всех конвективных членов и всех членов, учитывающих вязкость. Известны лишь отдельные частные решения.  [c.75]


Вторая важная задача проектирования летательного аппарата — изучение его аэродинамических свойств. Решение этой задачи связано с исследованием процессов обтекания газом поверхностей произвольной формы. Наиболее общими уравнениями, описывающими этот процесс, являются уравнения Навье — Стокса, которые в декартовой системе координат имеют вид  [c.8]

В большинстве практических случаев граничные условия для уравнения энергии (22) или (23) заранее неизвестны, поскольку существует тепловое взаимодействие между потоком жидкости и контактирующей с ним поверхностью рассматриваемого тела (элементом конструкции теплообменного аппарата). В общем случае граничные условия на поверхности рассматриваемого тела определяются не только гидродинамическими и тепловыми свойствами потока жидкости, но и характером процесса теплопроводности в самом теле. Поэтому к рассматриваемым выше уравнениям Навье-Стокса для потока жидкости необходимо добавить уравнение теплопроводности для тела  [c.21]

Система уравнений (49), (50) описывает общие термогидродинамические свойства изотропной жидкости. Она содержит как частный случай обычную гидродинамику, которая основана только на уравнениях (45) — (48), если предположить, что выполняется либо изотермическое, либо адиабатическое условие. В обоих случаях р является функцией только р, так что гидродинамическое свойство задается уже уравнениями (45) — (47), если р = р(р). Отметим, что (46) является хорошо известным уравнением Навье — Стокса с дополнительным членом, характеризующим вращение, и что первые два члена в правой части уравнения (48) являются функцией рассеяния Рэлея. Полная система уравнений содержит также теорию теплопроводности. В частности, уравнение (48) для покоящейся системы превращается в дифференциальное уравнение Фурье  [c.13]

Гидродинамика вязкой жидкости развивалась в XX в. по нескольким в значительной степени независимым направлениям. С одной стороны, изучалась полная система уравнений Навье Стокса и ее свойства, был найден ряд точных решений и получены некоторые общие теоремы. С другой стороны, в целях изучения прикладных задач развивались методы решения различным образом усеченных и, в первую очередь, линеаризованных уравнений Навье — Стокса, приспособленных для специфических задач (в частности, приближение гидродинамической теории смазки, линеаризация В. Озеена), также методы численного решения полной системы уравнений. Наконец, в XX в. был заложен новый раздел гидродинамики вязкой жидкости — теория пограничного слоя — и продолжала развиваться обособленная область -гидродинамики — теория турбулентности.  [c.294]


Гидромеханические процессы в элементах струйной автоматики, как пра-ви.ю, развиваются под влиянием большого числа факторов. Эти процессы подчиняются общим физическим закономерностям, конкретным выражение.м которых для потока вязкой жидкости являются дифференциальные уравнения (уравнения Навье-Стокса) и уравнение неразрывности. Но эти уравнения справедливы для целого класса явлений н имеют бесконечное число решений. Следовательно, для выделения рассматриваемого явления из целого класса явлений необходимы дополнительные условия, называемые условиями однозначности. Они включают граничные и начальные условия, определяющие единственное решение системы дифференциальных уравнений. К условиям однозначности должны быть также отнесены физические константы (плотность, вязкость и др.), характеризующие существенные для исследуемого процесса физические свойства среды. Под граничными условиями понимают геометрические характеристики потока (его размеры и форму), а также значения кинематических и динамических параметров на границах исследуемого участка потока. Начальные условия потока характеризуют геометрические, кинематические, динамические параметры потока в начальный момент времени.  [c.57]

В предыдущих главах описано большое количество различных парадоксальных свойств течений вязкой жидкости, которые в основном связаны с автомодельной постановкой задачи. Однако было бы неправильно полагать, что парадоксы возникают лишь благодаря определенной идеализации в постановке гидродинамической или тепловой задачи, каковой, в частности, является автомодельность течения, а в общем же случае ничего необычного в поведении решений уравнений Навье — Стокса и теплопроводности не должно быть. Имеются ситуации, когда парадоксальные свойства обнаруживают именно реальные неавтомодельные решения, в то время как идеализированное автомодельное решение ведет себя вполне пристойным образом.  [c.257]

Рассмотрим некоторые общие свойства асимптотических решений уравнений Навье-Стокса при стремлении характерного значения числа Рейнольдса к бесконечности. Для определенности будем считать, что рассматривается задача внешнего обтекания тела с характерным линейным размером I сверхзвуковым потоком вязкого газа. Нетрудно установить, что в большей части течения при Де сх) влияние вязкости исчезает и уравнения Навье-Стокса переходят в уравнения Эйлера. Вблизи поверхности тела в пределе образуется поверхность контактного разрыва (благодаря чему выполняется условие прилипания), которая при некоторых условиях может отрываться от поверхности тела. Если вдоль такой поверхности продольные градиенты параметров течения достаточно малы, то, как известно, ее структура в первом приближении описывается уравнениями типа уравнений пограничного слоя Прандтля.  [c.71]

Задачей интегрирования уравнений Навье — Стокса мы займемся в следующих главах. В этой же главе мы рассмотрим некоторые общие свойства этих уравнений, причем ограничимся только случаем несжимаемой вязкой жидкости.  [c.75]

Хотя уравнения пограничного слоя значительно проще уравнений Навье — Стокса, все же в математическом отношении они остаются настолько трудными, что ПО поводу их решений можно сделать только немного общих выводов. Необходимо прежде всего отметить, что уравнения Навье — Стокса являются относительно координат уравнениями эллиптического типа,, в то время как уравнения Прандтля для пограничного слоя принадлежат к параболическому типу. Упрощающие допущения, положенные в основу вывода уравнений пограничного слоя, привели к тому, что стало возможным принимать давление поперек пограничного слоя постоянным, а давление вдоль стенки считать совпадающим с давлением внешнего течения и поэтому рассматривать его как заданную функцию. Эти обстоятельства сделали ненужным уравнение движения в направлении, перпендикулярном к стенке,, что с физической точки зрения можно истолковать следующим образом частицы жидкости при своем движении поперек пограничного слоя не обладают массой и не испытывают замедления вследствие трения. Очевидно что при столь глубоком изменении уравнений движения следует ожидать что их решения могут иметь некоторые особые математические свойства,, и, наоборот, нельзя ожидать, чтобы результаты вычислений во всех случаях совпадали с результатами наблюдения действительных течений.  [c.142]


Отбрасывание в уравнении Орра — Зоммерфельда членов, зависящих от вязкости, представляет собой операцию, чреватую очень серьезными последствиями. В самом деле, понижая порядок дифференциального уравнения с четвертого до второго, мы, возможно, теряем важные свойства общего дифференциального уравнения возмущающего движения. К этому случаю применимы все соображения, высказанные в главе IV по поводу перехода от дифференциальных уравнений Навье — Стокса для вязкой жидкости к уравнениям Эйлера для жидкости без трения.  [c.428]

Уравнения пограничного слоя для этого наиболее общего случая лучше всего вывести в системе ортогональных координат, построенных около данной поверхности (рис. 105). Свойства этой ортогональной системы координат, необходимые для упрощения и сокращений равенств Навье — Стокса и уравнения неразрывности, даны в прилол ении. Уравнения пограничного слоя получают вид  [c.300]

Для общего алгоритма модификации уравнений высших приближений метода Чепмена - Энскога предлагается следующая формулировка. Обозначим отрезок ряда Чепмена - Энскога для переносных свойств через Е. Положим X = + 1Р- + где дается приближением Навье - Стокса, Е ) включает главные члены, - остальные члены высших приближений метода Чепмена - Энскога. Слагаемые не изменяют порядка системы уравнений сохранения, условий существования и устойчивости решений для данного класса течений. При учете Е + Е получаем уравнения сохранения первого приближения (усеченные уравнения), далее строится итерационная процедура, Е З) учитывается в неоднородных частях уравнений. В полученных выше модификациях сделана только одна итерация. В общем случае число итераций, как и выбор приближения для Е, определяется условиями задачи.  [c.190]

В дальнейшем мы ограничимся рассмотрением только плоских (двумерных) течений, так как, во-первых, только для них можно указать некоторые общие свойства уравнений Навье — Стокса, а во-вторых, именна они встречаются в преобладающей части приложений.  [c.78]

Наиболее удивительное свойство решения уравнений Стокса в конусе состоит в отсутствии отличия между сходящимися и расходящимися течениями соответственно с q <с. О nq >0. Это утверждение становится неверным, если принять во внимание инерционные эффекты ) если заменить в полных уравнениях Навье — Стокса V на —v, инерционные члены pvVv останутся неизмененными, в то время как вязкие члены iV изменят свой знак. Следовательно, решения уравнений Навье — Стокса в общем случае не инвариантны относительно изменения направления потока.  [c.164]

Во вторник была встреча с dr. RM. Leslie. Он работает в области динамики жидкостей с особыми свойствами, уравнения более общие, чем Навье-Стокса. В частности, учитывается анизотропия и электродинамика. Приложение - жидкие кристаллы.  [c.148]

При больших числах Рейнольдса представляют интерес течения невязкой жидкости с постулированными на основании опыта тангенциальными (вихревыми) поверхностями разрыва скорости, которые можно рассматривать как отрывные течения при числе Рейнольдса, равном бесконечности. Весьма важные результаты получены с помощью асимптотических методов решения уравнений Навье — Стокса при числе Рейнольдса, стремящемся к бесконечности, которые являются развитием классической теории пограничного слоя Прандтля. Эти методы применяются в тех случаях, когда нарушаются основные предположения теории пограничного слоя, например вследствие изменения граничных условий. К таким случаям относятся и характерные области отрывных течений (отрыва и присоединения). При отрыве сверхзвукового потока эти области могут приобретать общие локальные свойства, не зависящие от конкретного вида отрывного течения, что способствовало дальнейшему развитию теории сверхзвуковых отрывных течений и стимулировало пересмотр представлений об отрыве при малых скоростях. Хотя при достаточно больших числах Рей-лольдса течение в пограничном слое становится турбулентным, интервал больших докритических чисел Рейнольдса представляет практический интерес, а результаты, получаемые с помощью асимптотических методов, позволяют осуществить общий анализ отрывных течений, определить критерии подобия и, несомненно,  [c.234]

Структура книги такова. В первой главе обсуждаются общие вопросы и уже известные наиболее существенные парадоксы динамики вязкой жидкости. В последующих трех главах излагается новый материал. Во второй и третьей главах показаны парадоксальные свойства автомодельных решений уравнений Навье — Стокса из двух обширных классов — конических течений, в которых скорость убывает с удалением от начала координат, и течений, в которых скорость линейно растет. Последняя глава посвящена необычным свойствам пеавтомодельных струй. В пределах главы принята -одинарная нумерация формул. Ссылки на формулы из другого параграфа внутри той же главы имеют двойную нумерацию, а из других глав — тройную. При ссылках на параграфы из другой главы используется двойная нумерация первая цифра означает номер главы.  [c.3]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]


Подставляя ряд (1.4) в уравнение Больцмана и приравнивая коэффициенты при равных степенях получают рекуррентную систему уравнений для определения и т. д. При построении решения методом Знскога — Чепмена /<°) " /о функция выражается через производные от гидродинамических величин п, и и Т и т. д. Зная функции можно выписать любые гидродинамические (макроскопические) величины в частности, это позволяет выразить тензор напряжений и вектор потока тепйа через п, ии Т и их производные. Заменяя в общих уравнениях сохранения тензор напряжений и вектор потока тепла через гидродинамические величины, при оставлении в ряде (1.4) одного члена получим уравнения Эйлера, при двух — уравнения Навье—Стокса, при трех—уравнения Барнетта и т. д. ). Важно отметить, что кинетическая теория позволяет не только найти связи между тензором напряжения и вектором потока тепла и производными от гидродинамических величин, но и выразить входящие в эти связи коэффициенты пропорциональности (коэффициенты переноса) через известные свойства молекул. Этот метод используется для определения коэффициентов вязкости, теплопроводности и других переносных свойств газов и газовых смесей в широком диапазоне давлений и температур, для которых чрезвычайно трудно получить экспериментальные значения.  [c.426]

И если применительно к классическим моделям идеальной и вязкой жидкости первый этап успешно давно решен — уравнения Эйлера и Навье — Стокса выглядят обманчиво просто, то второй и третий этапы встречают до сих пор огромные трудности. Эти трудности связаны прежде всего с нелинейностью основных уравнений движения. ГГрименительно к идеальной жидкости Г.Гельмгольц установил [ 135], что все возможные интегралы уравнений Эйлера делятся на два широких класса,отвечающих так называемому потенциальному и вихревому движению.Г.Гельмгольц детально исследовал основные общие свойства интегралов вихревого движения и, по словам  [c.6]

Д.Стокс [228], заложив основы феноменологического подхода к гидродинамике и теории упругости, предложил общее определение понятия жидкости разность между давлением, действун )щим на проходящую в заданном направлениц плоскость через произвольную точку Р движущейся жидкости и одинаковым для всех направлений давлением в этой же точке, когда жидкость в ее окрестности находится в состоянии относительного равновесия, зависит от относительного движения жидкости в непосредственной близости от Р, причем относительное движение, обусловленное любым вращением, может быть исключено без изменения упомянутой разницы давления [228]. Этому определению Д.Стокс придал и четкую математическую форму, придя в итоге к уравнениям движения вязкой жидкости. В настоящее время эти уравнения называются уравнениями Навье — Стокса. История развития представлений о характере и свойствах жидкости в XIX и начале XX в. представлена в работе [ 206 ]. Экспериментально установлено, что коэффициент пропорциональности между касательными напряжениями в точке и локальным градиентом скорости зависит от температуры жидкости и давления в точке и называется коэффициентом вязкости ц. Физический смысл этого параметра, связанный с молекулярным переносом количества движения в жидкости, раскрыт в [8, 65, 66]. Наряду с коэффициентом вязкости ц часто используется кинематический коэффициент вязкости  [c.9]

Предпосылки возникновения хаоса. Изученные выше интегрируемые случаи движения нескольких точечных вихрей представляют собой исключение в общем неинтегрируемом случае нелинейной системы обыкновенных дифференциальных уравнений (3.2). Неинтегри-руемость любых уравнений является обычным делом и до недавнего времени казалось, что разработанные многочисленные эффективные вычислительные алгоритмы — методы Рунге — Кутта, Адамса — Бошфорта и другие — полностью обеспечивают я ализ поведения динамической системы на любом промежутке времени. Однако, начиная с работы Э.Лоренца [170], в научное сознание глубоко вошла идея о возможности хаотического поведения в детерминированных нелинейных систем ах даже с малым числом степеней свободы. В работе исследовалась общая задача термоконвекции применительно к образованию крупномасштабных вихревых структур. Используя уравнения Навье — Стокса, записанные в так называемом приближении Буссинеска [103] , и раскладывая их по стандартной процедуре метода Бубнова — Галеркина, Э.Лоренц получил свою знаменитую систему трех обыкновенных нелинейных уравнений. При определенных значениях параметров, отражающих физические характеристики исходной задачи, найдены необычные, хаотические свойства ее решений, названные странным аттрактором .  [c.157]

С математической точки зрения все эти явления описываются уравнениями Навье—Стокса. Нелинейный характер уравнений передает общие физические свойства течений наличие зон с резким изменением градиентов величин (пограничные слои, ударные волны и т. п.), отрыв потока, возможность ламинарного, переходного и турбулентного режимов течений, появление квазипериодиче-ских, неустойчивых решений и бифуркации решений. Асимптотический анализ уравнений Навье—Стокса позволяет выделить в рассматриваемой задаче характерные области течения в зависимости от характерных параметров задачи.  [c.62]

В общем случае указанное разбиение применяется непосредственно к выражениям для барнеттовых напряжений и тепловых потоков, а не к уравнениям сохранения. При этом не искажается структура уравнений сохранения (важнейшее, по мнению авторов, преимущество метода Чепмена - Энскога), процедура проста и экономна. В неоднородные части уравнений предлагается переносить не только слагаемые выражений для напряжений и тепловых потоков которые содержат вторые производные от газодинамических переменных и парные произведения первых производных от Г [1], но и слагаемые, включающие первые производные от р. Последнее делается для того, чтобы устранить вторые производные от р из однородных частей уравнений сохранения. Таким способом модифицированные уравнения по структуре и свойствам приближаются к уравнениям Навье - Стокса.  [c.188]

Математические основы для описания электронного потока разработаны Говардом [6]. Его расчеты являются настолько общими, что электронный газ можно рассматривать как прототип более общего класса двухвязкостных жидкостей. Двухвязкостной жидкостью называется жидкость, кинематические свойства которой характеризуются двумя параметрами, называемыми тангенциальным и нормальным коэффициентами вязкости. Основное уравнение движения аналогично уравнению движения Навье—Стокса, однако оно содержит дополнительные члены, обусловленные, например, зарядом электрона. В основу вывода уравнений положены законы Ньютона. Говардом приняты следующие основные гипотезы  [c.92]

Точные решения урависггий Навье — Стокса в общем виде получить в Настоящее время не удается. Однако для некоторых частных случаев такие решения найдены. Эти решения главным образом относятся к задачам, где все инерционные члены в левой части уравиепий 2.47) исчезают. В частности, указанным свойством обладают так называемые слоистые течения, признаком которых является наличие только одной составляющей скорости. Если этой со- Ставляющей является скорость и, а составляющие и и w равны нулю, то из уравнения неразрывности следует, что <ди дх—0 и, следовательно, и от координаты д не зависит. Таким образом, для слоистых течений имеем и=и у, z) зу=0, 1и=0 др/ду=0, dpjdz—O и вместо полной нелинейной t H xewbi (2.47) получим для стационарного течения линейное дифференциальное уравнение относительно скорости Щ у, г)  [c.146]


Теория движения вязкой жидкости в форме, весьма близкой к современной, была опубликована в 1845 г. Стоксом (1819—1903), который, выделив из общего перемещения элемента жидкости деформационную часть, указал простую линейную зависимость возникающих в жидкости напряжений от скоростей деформаций, г. е. дал обобш,е-ние ранее уже упомянутого закона Ньютона. До Стокса, основываяс1. на некоторых специальных молекулярных гипотезах относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1826 г. Навье (1785—1836), в 1831 г. Пуассит (1781 —1846) и в 1843 г. Сеп-Венан (1797—1886).  [c.27]


Смотреть страницы где упоминается термин Общие свойства уравнений Навье — Стокса : [c.207]   
Смотреть главы в:

Теория пограничного слоя  -> Общие свойства уравнений Навье — Стокса



ПОИСК



Навой 97, XIV

Навье

Навье уравнение

Навье—Стокса

Общие свойства

Общие уравнения

Стокс

Стокса Навье — Стокса

Стокса уравнение

Уравнение Навье—Стокса



© 2025 Mash-xxl.info Реклама на сайте