Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние температуры на напряжения и деформации

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ  [c.52]

Влияние температуры на напряжение и деформации в брусьях  [c.46]

В равенстве (54) первое слагаемое выражает приращение деформации упругости в связи с ростом напряжений, второе — подобное приращение деформации пластичности, третье — увеличение деформаций, вызванное повышением температуры, последнее—приращение деформаций ползучести. Вектор температурных деформаций состоит иэ трех векторов. Первый учитывает обычную температурную деформацию, второй и третий — влияние температуры на упругие и пластические свойства материала.  [c.542]


Чем ближе это отношение к единице, тем более значительно влияние температурной зависимости напряжения течения. Однако эксперименты показывают, что для чистых металлов температурная зависимость сопротивления деформации незначительна, и главной причиной влияния температуры на напряжение течения и коэффициент упрочнения является разница в субструктурах, формирующихся при разных температурах испытания  [c.129]

Влияние температуры на строение и свойства металла. Большое влияние на деформации, которые могут быть получены к моменту разрушения заготовки, оказывает температура нагрева последней. При нагреве в металле деформируемой заготовки возникают разупрочняющие процессы — возврат и рекристаллизация, действие которых противоположно упрочняющему действию пластической деформации. В случае холодной обработки давлением из-за неравномерного распределения деформаций по объему заготовки, а также различия формы, размеров и свойств отдельных зерен последние получают различную деформацию. Вследствие этого после снятия внешней нагрузки между соседними зернами остаются напряжения, называемые остаточными. При повышении температуры материала заготовки атомы получают возможность смещаться и приобретать положения, соответствующие минимальному значению потенциальной энергии, поэтому неравномерность упругих деформаций и остаточные напряжения уменьшаются. Это явление, называемое возвратом, несколько снижает прочность материала и повышает пластичность. Возврат чистых металлов происходит при температурах, превышающих (0,25...0,3) Гпл, где Тпп — абсолютная температура плавления. При возврате форма и размеры зерен не изменяются.  [c.15]

Однако это особенно актуально для предельно нагруженных конструкций (например, турбины), где рабочие температуры составляют 500—2000 °С, а механические нагрузки приближаются к пределу прочности материалов. Для большинства же практических применений ЭМУ температуры и механические нагрузки далеки от предельных, влияние напряжений и деформаций на распределение температур мало, и им можно пренебречь. Это позволяет независимо найти температуры в конструкции, а уже вторым шагом определить напряжения и деформации, вызванные этим распределением.  [c.120]

Изучение влияния низких температур на прочностные и деформационные характеристики металлов представляет значительный интерес в связи с исследованием проблемы хрупкости. Склонность материала к хрупкому разрушению в настоящее время оценивается величиной ударной вязкости, определяемой энергией разрушения призматического образца с надрезом, или величиной критического коэффициента вязкости разрушения, определяемой по диаграмме растяжения образца с трещиной. Обе характеристики являются интегральными характеристиками материала и отражают совместное влияние скорости деформации, температуры, напряженного состояния и распределения деформаций по объему материала. Испытания на растяжение обеспечивают возможность изучения раздельного влияния скорости и температуры.  [c.129]


Коррозионное воздействие, например со стороны окислительной газовой среды в турбогенераторе или установке для газификации угля, в сочетании с высокой температурой может приводить к преждевременному разрушению конструкций даже при сравнительно низких механических напряжениях. В принципе можно предусмотреть меры против пластической деформации при высоких температурах еще на стадии проектирования, повысив сопротивление ползучести, длительную прочность (время до разрушения) и вязкость разрушения материалов. Однако, к сожалению, современные знания о ползучести и разрушении материалов под напряжением, даже в отсутствие осложняющих факторов, связанных с воздействием внешней среды, являются в лучшем случае качественными [I—7], Известные проявления влияния среды на ползучесть и разрушение материалов под напряжением еще требуют анализа, обобщения и систематизации.  [c.9]

Расчету на прочность дисков турбомашин посвящена обширная литература. Известен ряд разработанных методов расчета напряжений и деформаций, возникающих в тонком диске вследствие вращения и неравномерного температурного ноля [6, 63, 78, 98, 120, 158 и др.]. Применение современных вычислительных средств позволяет без особых затруднений учитывать в расчете влияние температуры на физико-механические характеристики материала, рассматривать деформации за пределом упругости и в условиях ползучести. При этом отличия между расчетными методами, если они опираются на одни и те же предпосылки, становятся малосущественными.  [c.136]

Минимальная скорость накопления деформаций ползучести при > 200 циклов увеличивается при увеличении максимальных напряжений. Возможное ускорение ползучести в состоянии, близком к образованию макротрещин, не учтено. Для разгрузки принята линейная зависимость между напряжениями и деформациями. Исследования НДС и прочности проведены с целью изучения влияния на НДС различных факторов температуры, времени выдержки при максимальной нагрузке, давления, длины мембранной зоны.  [c.127]

При интенсивных термомеханических и динамических воздействиях в наиболее нагруженных элементах конструкций АЭУ, в зонах их конструктивных неоднородностей возможно возникновение пластических деформаций. На зависимости между напряжениями и деформациями в этом случае заметное влияние оказывают уровни температур и скорости деформирования. Влияние скоростей деформирования становится особенно существенным при высоких температурах и радиационном облучении [33, 34].  [c.100]

Циклическое изменение те.мпературы в процессе нагружения оказывает существенное влияние на деформационные свойства материала. При этом даже в нулевом полуцикле ход кривой деформирования в общем случае зависит не только от текущего значения температуры, но и от ее величины в предшествующие моменты времени. Однако для ряда практически важных случаев неизотермического нагружения, характеризующихся плавным изменением нагрузки и температуры, как показано в работах [1, 3], такая зависимость с допустимой для инженерных расчетов точностью и в связи с естественным разбросом экспериментальных данных может не учитываться и в качестве определяющих соотношений могут использоваться уравнения деформационной теории пластичности, связывающие конечные величины напряжений, деформаций и температуры. Для нулевого полуцикла принятие таких допущений эквивалентно гипотезе существовании поверхности неизотермического нагружения в координатах напряжение, деформация, температура. Использование этой гипотезы при циклическом нагружении связано с введением дополнительных предположений относительно выбора параметра, определяющего начало отсчета напряжений и деформаций при построении поверхности неизотермического нагружения в полуцикле.  [c.115]

Термическая обработка сварных конструкций. В результате сварки механические свойства металла около сварного шва изменяются. Кроме того, в сварных соединениях образуются сварочные остаточные напряжения и деформации, которые могут отрицательно сказаться на эксплуатационной способности изделия. Поэтому в технологической цепочке предусматривают термическую обработку готового изделия, позволяющую устранить отрицательное влияние сварки. Как правило, это отпуск. Он состоит в нагреве изделия примерно до 650 °С, выдержке при этой температуре и медленном охлаждении. После отпуска свойства металла восстанавливаются, напряжения и деформации снижаются. Однако это очень дорогостоящая операция, поскольку для ее проведения требуются специальное оборудование (печи) и существенные энергозатраты.  [c.368]


Приведенные данные о влиянии покрытий на формоизменение стали можно объяснить, воспользовавшись моделью термического зацепления . Различие коэффициентов термического расширения материала покрытия и основы в листе обусловливает появление внутренних напряжений и деформаций. В интервале температур циклической термообработки пределы текучести покрытия и основы различаются не сильно (табл. 9). Покрытие тоньше основы и при отсутствии полиморфных превращений железа при изменении температуры сохраняется неравенство > ( s.n n- В этом случае пластически деформироваться должно покрытие, а основа испытывает лишь упругую деформацию. Во время полиморфного превращения сопротивление железа пластической деформации резко снижается (см. гл. П1) и становится возможной необратимая деформация основы. В соответствии с изложенным величина необратимой деформации листа с покрытием за один цикл будет определяться разностью деформаций основы во время прямого и обратного полиморфных превращений.  [c.182]

Если классифицировать указанным образом явления, характеризующие высокотемпературную прочность, до можно отметить, что самыми существенными являются не зависящие от времени прочностные свойства при высокотемпературном растяжении,. мало- и многоцикловой усталости- Кроме того, существенным является ползучесть при постоянном напряжении, зависящая от времени, и ползучесть при циклическом изменении напряжения, проявляющая дополнительно специфический эффект циклического изменения температуры. Таким образом, характеристики деформации при высокотемпературном растяжении и термическом скачке деформации, а также характеристики разрушения при высокотемпературной и термической усталости, определяемые при условиях сочетания или наложения влияния напряжения и деформации, времени и температуры, не обязательно выражаются основными свойствами. Они во многих случаях про являют специфические характеристики деформации и сопротивления разрушению из-за взаимного влияния. Вероятно, в некоторых случаях имеются отклонения характеристик прочности от указанного на схеме положения (характеризуемые, например, линейным законом накопления повреждений).  [c.18]

Здесь [/ ] - матрица-столбец, содержащая т параметров внешней нагрузки матрицы [Л ] (размерности пХт) и [BJ (пХ п) постоянны (для простоты будем пренебрегать влиянием температуры на модуль упругости) и могут быть найдены в предварительном счете. Выражение (9.3) определяет поле деформаций в конструкции, выражение (9.4) — поле напряжений (через упругие деформации pij). Эти два выражения, как будет показано в дальнейшем, отвечают методу пере-меш,ений и методу сил. Матрицы [е], [/ ], [р] и [я] — переменные, их эволюция определяется из расчета кинетики, поэтому выражения  [c.209]

Кроме перечисленных структурных параметров большое влияние на механические свойства полимеров оказывают внешние факторы, такие, как температура длительность, частота или скорость нагружения давление амплитуда напряжения и деформации вид напряженного состояния (сдвиг, растяжение, двухосное растяжение и т. п.) термообработка или термическая предыстория природа окружающей среды.  [c.13]

Изделия из стали К4 диаметром 20—22 мм прокаливаются в масле и соляной ванне. Температура соляной ванны может быть 160—180° С, а также 220° С. Благодаря применению более мягкой охлаждающей среды при закалке стали К4 в ней возникают меньшие напряжения и деформации, поэтому эта сталь пригодна для производства, например, измерительного инструмента. Возникающее при закалке увеличение размеров примерно на 0,1% компенсируется уменьшением размеров во время отпуска (см. табл. 17, 18). Величина изменения размеров (объемная деформация) и формы зависит от содержания в стали аустенита и от его стабильности. Количество остаточного аустенита и величины объемной деформации, возникающей под влиянием выдержки при температуре 150° С после различных температур нагрева при закалке, можно видеть в табл. 58.  [c.180]

Задача решается методом шагов по времени, на каждом из которых допускаются итерации. В пределах шага деформации ползучести должны изменяться незначительно по сравнению с упругими, чтобы перераспределение напряжений не было очень большим. Приращения деформаций ползучести на каждом шаге вычисляются по формулам теории течения, описанной в главе IV, а приращения де рмаций пластичности — согласно деформационной теории. Они воспринимаются как остаточные. Полные деформации пластичности и ползучести получаются путем суммирования приращений на каждом шаге. Для решения задачи термопластичности применяется схема метода упругих решений. Упругие свойства материала предполагаются зависящими от температуры нулевой гармоники, т. е. могут изменяться только в радиальном и осевом направлениях, и задаются в виде таблиц для фиксированных значений температур. Каждый материал может иметь свою температурную сетку. Для вычисления свойств при промежуточных температурах используется линейная или квадратичная интерполяция. Свойства материала в отношении свойств ползучести, влияние температуры на которые более существенно, зависят от температуры в полной мере и могут изменяться в теле во всех трех направлениях.  [c.170]

Ползучесть металла. На рис. 24.1 показано влияние температуры на прочность и пластичность малоуглеродистой стали. Предел прочности достигает максимума при температуре 250 °С и при дальнейшем повышепии температуры резко уменьшается. Предел текучести с повышением температуры уменьшается, особенно заметно начиная с температуры 250 °С. Показатели пластичности сначала несколько уменьшаются, а затем, начиная с температуры 250 °С, возрастают. При совместном воздействии в течение длительного времени высоких напряжений и температур более 450 °С в стали возникают явления ползучести. Ползучестью металла называют процесс накопления пластической деформации стали при длительной ее работе под нагрузкой при напряжениях ниже предела текучести. При ползучести  [c.432]


На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Влияние температуры на разрушение сваренных полос из углеродистой стали, содержащей 0,16—0,28 /о С, показано на рис. 61. В полосе без надреза и при отсутствии остаточных напряжений [91] разрушение происходит при весьма больших пластических деформациях на уровне предела прочности Ствр (кривая RQP). При наличии острого надреза (без остаточных напряжений) при температуре выше верхней критической t р происходит разрушение путем сдвига при достижении предела прочности при снижении температуры ниже 1кр разрушение, происходит путем отрыва на уровне напряжений предела текучести (кривая PQST). Если при этом имеются значительные остаточные напряжения, например, после сварки, то при температуре ниже t кр картина разрушений меняется. При температурах, меньших нижней критической г кр, напряжения от внешних нагрузок больше критических (линия озУ) приводят к распространению хрупкой трещины по всему сечению и к хрупкому разрушению. При меньших напряжениях хрупкая трещина может возникнуть, но ее развитие замедляется при выходе из области значительных остаточных напряжений.  [c.220]

Для исследования динамических диаграмм напряжение — деформация материалов при нормальных температурах используют мерные стержни Гопкинсона. Сущность метода испытаний сводится к тому, что образец располагают между торцами двух мерных стержней и нагружают импульсом давления, возбуждаемым в одном из стержней. Напряжение, деформацию, скорость деформации образца определяют по известным соотношениям теории упругих волн из условий равенства усилий и перемещений соприкасающихся торцовых сечений образца и стержней. При этом предполагают, что амплитуда импульса давления и предел прочности исследуемого материала образца ниже предела пропорциональности материала стержней. Применение указанного метода при повышенных температурах связано с трудностями измерений упругих характеристик материала стержней и деформаций. На рис. 8 приведена функциональная схема устройства для исследования влияния температуры на динамические прочностные характеристики металлов при одноосном сжатии. Исследуёмый образец 6 расположен между мерными стержнями 5 и S. Импульс давления возбуждают в стержне 5 с помощью взрывного нагружающего устройства, состоящего из тонкого слоя взрывчатого вещества 1, ударника 2 и демпфера 3. При взрыве в стержне возникает импульс сжатия трапецеидальной формы, характеристики которого зависят от плотности материала и диаметра демпфера, а также соотношения толщины демпфера и слоя взрыв-  [c.111]

Обеспечение работоспособности и надежности уплотнительных устройств имеет часто решающее значение в проблеме ресурса и безотказности машин и механизмов. Комплексная проблема совершенствования уплотнительной техники (герметология) включает создание новых материалов, покрытий, отделочно-упрочняющих технологий, выбор оптимальных конструкций, усилий герметизации в условиях уплотнения различных сред в широком спектре нагружений, вибраций, перепадов температур, в экстремальных условиях. Развитие методов прогнозирования должно основываться на решении контактных задач, учитывающих форму и кривизну макротел и микрогеометрию, упруго-пластические свойства материалов, масштабный фактор, старение материалов и кинетику изменения напряжений и деформаций в герметизируемых стыках уплотнительных устройств. Актуальными являются исследования в области физики истечения жидкостей и газов в микрообъемах герметизирующих сопряжений, влияния кривизны вершин неровностей и высотных характеристик профилей на смачиваемость и характер проявления капиллярных эффектов, динамики процессов герметизации и разгерметизации стыков при многократном нагружении, влияния эксплуатационных факторов и совместимости уплотняющих материалов и сред на величину утечек в соединениях во времени.  [c.198]

Эксплуатационные режимы нагружения элементов конструкций имеют, как правило, более сложный характер, чем распространенные в практике экспериментов синусоидальные или треугольные формы циклов нагружения, хотя именно они являются наиболее часто используемыми при получении основных характеристик циклических свойств материалов и закономерностей их изменения в процессе деформирования. Синусоидальный или треугольный законы изменения напряжений и деформаций использовались в качестве основных и при экспериментальном изучении кинетики циклической и односторонне накапливаемой пласти ческих деформаций и их описании соответствующими зависимостями, рассмотренными в предыдущих главах. В ряде случаев условия эксплуатационного нагружения представляется возможным схематизировать такими упрощенными режимами. Однако в большинстве случаев для исследования поведения материала с учетом реальных условий оказывается необходимым рассмотрение и воспроизведение на экспериментальном оборудовании таких более сложных режимов, как двух-и многоступенчатое циклическое нагружение с различным чередованием уровней амплитуд напряжений и деформаций, нагружение трапецеидальными циклами с выдержками различной длительности на экстремумах нагрузки в полуциклах растяжения и (или) сжатия, а также в точках полного снятия нагрузки, двухчастотное и полигармо-ническое нагружение, нагружение со случайным чередованием амплитуд напряжений, соответствующим зарегистрированными в эксплуатации условиями. Особенно необходимым воспроизведение и исследование таких режимов становится в области повышенных и высоких температур, когда на характер и степень проявления температурно-временных эффектов, а следовательно, и на кинетику деформаций, существенное влияние оказывают факторы длительности, формы цикла и уровней напряжений или деформаций в процессе нагружения. Ниже приведены исследования закономерностей развития деформаций для ряда упомянутых режимов нагружения, позволяющие проанализировать применимость тех или иных уравнений кривых малоциклового деформирования и применение параметров этих уравнений при изменении режимов.  [c.64]


Влияние воздействия физического поля может быть учтено изменением параметров Если обобщить представление о термомеханической поверхности на случай циклического нагружения, то можно считать, что параметры кривой циклического нагружения в (4.6.27) изменяются с температурой, а время суммарной наработки при повышенных температурах влияет на их изменение существенно слабее. В этом случае можно для каждой расчетной точки построить кривые хщклического деформирования при нагрузке и разгрузке, предполагая, что нагрузка и разгрузка происходят при разных температурах (рис. 4.6.16). На основании такой модели материала можно исследовать кинетику напряжений и деформаций в зоне концентратора напряжений при циклическом неизотермическом нагружении [96].  [c.266]

Особо следует отметить влияние температуры на конструкцию РДТТ. Во-первых, корпус двигателя должен быть предохранен тем или иным способом от непосредственного воздействия высоких температур горячих газов. Во-вторых, должны быть приняты меры, чтобы изменения температуры в процессе изготовления и хранения не приводили к значительным температурным напряжениям и деформациям. Напряжения и деформации могут возникать вследствие резкого (обычно почти в десять раз) различия между коэффициентами линейного расширения топлива и материала корпуса двигателя или вследствие неравномерного поля температур в крупногабаритных зарядах (при резком изменении температуры окружающей среды).  [c.371]

Сделанные упрощения не справедливы для многофазного сплава типа механической смеси, состоящего из разнородных кристаллических зерен с кубической решеткой или из разнородных упругоизотропных зерен, имеющих различные упругие характеристики. Несмотря на то, что в таком поликристалле каждое зерно в отдельности изотропно по отношению к тепловому расширению и всестороннему равномерному растяжению или сжатию, модули всестороннего сжатия поликристалла и отдельных зерен различны, а избыточная температурная деформация зерен Лей =7 О. Поэтому в (2.69)—(2.72) не удается перейти от тензорных компонентов напряжений и деформаций к девнаторным компонентам, т. е. на неупругое деформирование таких поликристаллов в общем случае должны повлиять и гидростатическая составляющая тензора осредненных напряжений, и даже однородное по объему изменение температуры. Влияние этих факторов не учитывается в распространенных феноменологических теориях неупругого деформирования материала (см. 1.5).  [c.104]

Влияние температурно-силовых параметров деформации на аномалии свойств при 7ч=ье-превращении, фазовый состав и тонкую структуру железомарганцевых сплавов подробно представлено в работах [2, 4, 162]. Для исследования авторами указанных работ был выбран сплав Г20С2, так как он обладает наибольшей стабильностью е-фазы. Образцы для испытаний на растяжение и кручение изготавливали из листов промышленного производства. Испытание на кручение позволяло более прецизионно контролировать температуру ( 1°С) и деформацию ( 5-10 %) образца и полностью исключить дилатометрический эффект от фазового превращения из общей деформации сверхпластич-ности. Во всех случаях температура нагрева образца под нагрузкой не превышала 600 °С, так как даже минимальное напряжение при более высокой температуре вызывало ползучесть.  [c.135]

Экспериментальные истоки общих вопросов, развитых достаточно глубоко в этой главе, можно проследить, возвращаясь назад к исследованиям Вертгейма. Тот же вывод оказался бы справедливым, если бы мы ретроспективно проследили вплоть до исходной точки историю развития экспериментов по фотоупругости эксперимент Вертгейма был первым важным исследованием в этой области, что привело к открытию того, что в природе наблюдается линейная зависимость между напряжениями и параметром оптических свойств ). Аналогично, изменение объема при кручении пустотелого образца как функции угла закручивания, позже исследованное Пойнтингом, влияние электрических и магнитных полей на зависимость между напряжением и деформацией и зависимость упругих постоянных от температуры (Wertheim [1844, 1 (а)]) были впервые исследованы Вертгеймом.  [c.461]

Детали машин и элементы конструкций — распределенные системы, поля напряжений, деформаций и температур в которых, как правило, неоднородны. Поэтому накопление повреждений протекает в различных точках неодинаково, так что меры повреждений — функции не только времени, но и координат. Это приводит к континуальным моделям повреждения, в которых наряду с полями напряжений и температуры рассматривают поля некоторых скалярных и тензорных характеристик поврежденности материала. По существу модели теории пластичности и теории ползучести представляют собой континуальные модели накопления повреждений, в которых степень повреждения материала определена через поля тензора пластических деформаций или его инвариантов. В более общем случае можно ввести дополнительные поля, которые характеризуют плотность дислокаций, линий скольжения, микротрещин и т. п. Предложен ряд моделей, использующих тензоры второго и более высокого ранга. Однако для использования этих моделей в прикладных расчетах необходимо иметь весьма обширные опытные данные, которые можно получить только из весьма тонких и обстоятельных экспериментов (которые пока никто не проводил). Возможно, что более практичным является другой путь развивать не полуэмпири-ческие, а структурные модели, которые явным образом описывают явления, происходящие в структуре материала при его повреждении. Влияние неоднородности полей напряжений и температур на процессы повреждения целесообразнее учитывать, рассматривая достаточно большое число наиболее напряженных точек и узлов, т. е. увеличивая размерность вектора г 5.  [c.93]

Стволы орудий. Постепенный рост трещин в нарезных стволах. Постепенное повреждение или рост трещин, ведущий к разрушению после неожиданно короткого срока службы является основной проблемой прочности стволов орудий. Известно, что радиальные трещины развиваются в канале ствола орудия после небольшого числа выстрелов. Долгое время полагали, что давление пороховых газов и интенсивный нагрев ствола при сгорании пороха являются основными причинами начального растрескивания ствола. Однако при более подробном изз чении этого вопроса в период второй мировой войны выявилось наличие крайне высоких усилий, возникающих во время ввинчивания ведущего пояска снаряда в нарезы. Полагали, что они способствуют зарождению трещин. Первые исследования механизма этого явления были проведены Бьюксом (1946 г.), который ввел методы точного анализа напряжений в тонкостенных цилиндрах при различном распределении осесимметричного давления. В этой работе были рассмотрены влияние температуры на деформацию ствола орудия, факторы концентрации напряжений, возникающие из-за сложной геометрии нарезов, а также критерий критического давления для хрупкого разрушения находящегося под внутренним давлением ствола орудия с трещиной, который основан на теории Гриффитса (1920, 1924 гг.) и используется для интерпретации результатов экспериментальных испытаний орудия давлением взрыва.  [c.305]

Ввиду того что в приборах указанного назначения используются в основном лазеры на стеклах и кристаллах, активированных ионами неодима, изложение преимущественно затрагивает вопросы термооптики лазеров именно на этих средах. В книге приводятся сведения о физических свойствах материалов расчетные соотношения для полей температуры, напряжений и деформаций в активных элементах различного профиля рассматривается влияние термооптических аберраций и температуры активной среды на энергетические, поляризационные и спектральные характеристики лазерного излучения.  [c.4]

Влияние температуры. Имеется весьма ограниченное количество экспериментальных данных по влиянию высоких и низких температур на величину неупругих деформаций [137], Эти данные показывают, что для большинства сплавов, как, например, сталь ЭИ612 к сплавы ЭИ437Б и ЭИ826, с повышением температуры напряжения перехода от упругого к неупругому деформированию смещаются в область более низких напряжений (рис. 128). Соответствующим образом смещаются и кривые усталости. На рис. 128 в виде штриховых линий показаны напряжения, соответствующие долговечности 10 и 10 циклов. Повышение температур не приводит для исследованных сплавов к существенному увеличению значений неупругих деформаций в области многоцикловой кривой усталости, хотя и имеет место, как видно из рис. 127, их некоторое увеличение в этом диапазоне напряжений с повышением температуры.  [c.176]


Смотреть страницы где упоминается термин Влияние температуры на напряжения и деформации : [c.73]    [c.699]    [c.156]    [c.985]    [c.234]    [c.28]    [c.40]    [c.139]    [c.84]    [c.20]    [c.165]    [c.265]    [c.91]   
Смотреть главы в:

Сопротивление материалов Издание 4  -> Влияние температуры на напряжения и деформации



ПОИСК



597 — Деформации и напряжения

Влияние Влияние температуры

Влияние деформации

Влияние напряжений

Влияние температуры деформации

Влияние температуры на напряжение и деформации в брусьях

Напряжения Влияние температуры

Температура (напряжении, деформации)

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте