Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка Механические свойства металла

Типы электродов для сварки, механические свойства металла шва и сварного соединения, а также процент содержания серы и фосфора в металле шва при применении этих электродов должны соответствовать нормам, указанным в табл. 5-2.  [c.71]

Термическая обработка сварных конструкций. В результате сварки механические свойства металла около сварного шва изменяются. Кроме того, в сварных соединениях образуются сварочные остаточные напряжения и деформации, которые могут отрицательно сказаться на эксплуатационной способности изделия. Поэтому в технологической цепочке предусматривают термическую обработку готового изделия, позволяющую устранить отрицательное влияние сварки. Как правило, это отпуск. Он состоит в нагреве изделия примерно до 650 °С, выдержке при этой температуре и медленном охлаждении. После отпуска свойства металла восстанавливаются, напряжения и деформации снижаются. Однако это очень дорогостоящая операция, поскольку для ее проведения требуются специальное оборудование (печи) и существенные энергозатраты.  [c.368]


При дуговой сварке механические свойства металла сварного шва и прочность соединения в целом зависят от марки титана, марки присадочной проволоки, способов и режимов сварки и могут быть доведены до показателей основного металла. Титановые а-, псевдо-а- и р-сплавы хорошо свариваются, малочувствительны к изменению термических циклов сварки и могут свариваться в широком диапазоне режимов. Сварные соединения из низколегированных а-сплавов почти равнопрочны основному металлу. С повышением легирования различие в прочности и пластичности сварного соединения и основного металла возрастает. Для стабилизации структуры и снятия остаточных напряжений применяют для а-сплавов послесварочный отжиг.  [c.476]

Марка электродов Положение швов при сварке Механические свойства металла швов Коэффициент наплавки в г/а-ч Потери в %  [c.138]

Электроды для дуговой сварки. Электроды должны иметь паспорт, в котором указываются его марка, тип и назначение, марки свариваемой стали и электродной проволоки, состав или группа покрытия, род тока, рекомендуемые режимы сварки, механические свойства металла шва, коэффициент наплавки, режимы сушки и Термообработки.  [c.346]

Известен способ автоматической дуговой сварки под флюсом угольным (графитизированным) электродом, затачиваемым в виде лопатки. Сварку выполняют на постоянном токе обратной полярности с использованием стандартных флюсов ОСЦ-45, АН-348-А и др. Для раскисления металла шва цинком применяют присадку из латуни или томпака, закладываемую в стык при сборке листов под сварку. Механические свойства металла шва, полученного на графитовой подкладке при сварке меди М1 толщиной 5 мм, следующие = 176,6- 182,5 МПа, 5 = = 25- 33 %  [c.395]

Механические свойства, регламентируемые стандартом или техническими условиями для электродов данной марки, относятся к случаю наплавки металла или сварки стыкового шва сравнительно небольшой длины. В зависимости от условий сварки механические свойства металла шва реальной сварной конструкции могут отличаться от свойств электродов, указанных в стандарте или паспорте.  [c.307]

В зависимости от условий сварки механические свойства металла шва, сваренного под флюсом, изменяются в довольно широких пределах. Если необходимо получить металл шва с пластическими прочностными свойствами, близкими к свойствам основного металла, сечение углового шва или слоя (при многослойной сварке) следует назначать в зависимости от толщины свариваемого металла. Опытным путем установлена зависимость между толщиной основного металла и сечением шва или слоя  [c.476]


В связи с этим недостаточно выбирать режим сварки и наплавки только но показателям сплошности, правильного формирования, отсутствия дефектов, устойчивости и производительности процесса. Необходимо выбирать такие режимы, которые, обеспечивая указанные выше требования, способствовали бы такл е получению благоприятных структур и механических свойств металла шва и з. т. в.  [c.199]

Металл, нагревавшийся в интервале температур. 500—550° С до А С (участок рекристаллизации), по структуре незначительно отличается от основного. Если до сварки металл подвергался пластической деформации, то при нагреве в нем происходит сращивание раздробленных зерен основного металла — рекристаллизация. При значительной выдержке при этих температурах может произойти значительный рост зерен. Механические свойства металла этого участка могут несколько снизиться вследствие разупрочнения ввиду снятия наклепа.  [c.212]

Поэтому при проверке пригодности принятого режима и определении температуры подогрева при сварке закаливающихся сталей достаточно использовать результаты стандартных испытаний стали по методике ИМЕТ-1 или валиковой пробы, на основании которых можно получить зависимости изменения конечных механических свойств металла околошовной зоны от скорости охлаждения и длительности пребывания выше Ас . По этим данным можно установить интервал скоростей охлаждения, ограничивающий область частичной закалки стали в зоне термического влияния, и выбрать расчетное значение по допускаемому проценту мартенсита в структуре и благоприятному сочетанию механических свойств.  [c.233]

Стыковые соединения могут разрушаться по шву, месту сплавления металла шва с металлом детали, сечению самой детали в зоне термического влияния. Зоной термического влияния называют прилегающий к шву участок детали, в котором в результате нагревания при сварке изменяются механические свойства металла. Понижение механических свойств в зоне термического влияния особенно значительно при сварке термически обработанных, а также наклепанных сталей. Для таких соединений рекомендуют термообработку и наклеп после сварки.  [c.57]

Электроды для сварки классифицируются в соответствии с ГОСТ 9467—75 (табл. 10.4). В основу классификации положены механические свойства металла шва и сварного соединения в целом. Тип электрода определяется буквой 3 с цифрой, показывающей гарантированное временное сопротивление наплавленного металла в десятках мегапаскалей.  [c.391]

В зависимости от марки порошковые проволоки используют для сварки малоуглеродистых низколегированных и высокопрочных сталей и обеспечивают необходимые механические свойства металла шва.  [c.400]

Фазовые и структурные превращения при сварке конструкционных сталей нередко вызывают понижение технологической прочности, механических и эксплуатационных свойств металла сварных соединений. Под технологической прочностью понимают способность материалов без разрушения выдерживать термомеханические воздействия в процессе сварки. В условиях указанных воздействий часто существенно понижаются механические свойства металла, что вместе с довольно высокими сварочными деформациями и напряжениями может служить причиной образования трещин.  [c.511]

Для установления возможности создания благоприятных физико-механических свойств металла и повышения работоспособности сварного соединения проводили исследование влияния различных вариантов сочетаний видов сварки, сварочных материалов и свариваемых сталей, технологических режимов сварки, термообработки, дополнительных напряжений на распределение электродных потенциалов в зонах сварного соединения, а также на изменение микро- и макронапряжений, структуру, микротвердость.  [c.237]

Изменение скорости остывания металла сварочной ванны и околошовной зоны сопровождается изменением структуры и механических свойств металла готового соединения, изменением условий формирования металла шва. В зависимости от применяемых основных и сварочных материалов для получения качественного соединения можно либо ограничиваться небольшим варьированием режимами сварки, либо необходимы дополнительные технологические приемы (предварительный или сопутствующий подогревы, утепление и т. п.).  [c.72]


ЦМ 7-Э 42-5, 0-Р, ГОСТ 9467—60 Типы электродов и механические свойства металла шва (графа А ) и сварного соединения (графа Б ) для сварки конструкционных сталей  [c.363]

Типы электродов и механические свойства металла шва или наплавленного металла для сварки теплоустойчивых сталей  [c.363]

Сварочные материалы, применяемые для сварки стальных конструкций, должны обеспечивать механические свойства металла шва и сварного соединения (предел прочности, предел текучести, относительное удлинение, угол загиба, ударную вязкость) не меиее нижнего предела свойств основного металла конструкции (табл. 15).  [c.24]

В табл. 31 приведены данные, характеризующие влияние степени термической регенерации на механические свойства металла шва. При сварке с большим теплонасыщением основного металла степень термической регенерации оказывается наивысшей.  [c.305]

Для сварки под слоем флюса применяется кремнемарганцевая (ГОСТ 178-44) и малоуглеродистая (ГОСТ 2246-43) электродная проволока. Кремнемарганцевая проволока даёт плотный и однородный металл шва с высокими механическими показателями. Повышенное содержание марганца в проволоке способствует легированию металла шва. Малоуглеродистая проволока обеспечивает достаточно высокие механические свойства металла шва, но даёт металл, склонный к образованию пор и ноздрей. Электродная проволока должна быть холоднотянутой и калиброванной, с гладкой и чистой поверхностью.  [c.328]

Классификация и характеристика электродов. Электроды, предназначенные для ручной дуговой сварки, в стандартах классифицируются по следующим признакам металлу, для сварки i oto-рого они предназначены толщине и типу покрытия механическим свойствам металла шва способу нанесения покрытия (опрессовкой или окунанием) и др.  [c.103]

Строгое лтатемэтическое обоснование имеют только формулы по расчету процессов пагрева и охлаждения металла при сварке. До настоящего времени наиболее широко практикуется выбор параметров режима сварки по различным таблицам и номограммам, построенным па основании большого числа экспериментов. Использование этих данных позволяет выбрать все параметры ре-Нчима сварки /, С/, V v, 1 ил1 < э, h- При этом можно быть уверенным, что будут обеспечены необходимое проплавление свариваемых кромок, удовлетворительная форма внешней части шва, механические свойства металла шва на уровне основного металла. Однако номограммы и таблицы не содержат информации о таких важных и интересных для технолога сведениях, как 1) какие размеры имеет шов (//, е, h, г[з ) 2) каковы величины F -p, и y,,  [c.172]

Ниже приведены приближенные методы расчета режимов сварки, геометрических размеров сварных швов, механических свойств металла шва и п. т. в., полученные различными исследователямп по экспериментальным данным нрн их об1)аботке статистическими методами.  [c.180]

При оценке о кидаемых механических свойств металла шва необходимо учитывать действие следующих технологических факторов долю участия основного металла н формировании шва и его химический состав тип и химический состав сварочных материалов лютод п ре жим сварки тип соедииепнн п число проходов (слоев) в сварном шве размеры сварного соединения вели-  [c.198]

При сварке низкоуглеродистых сталей обычными методами химический состав металла шва, характеризуелп>1й эквивалентным содер/канием углерода Сэш, незначительно отличается от химического состава основного металла, характеризуемого также эквивалептпыл содержанием углерода Сэо- Для тих сталей Сэо 0,21 0,35% и Сэ.ш = 0,20 0,30%. Механические свойства металла шва зависят в основном толы о от скорости его охлаждения и пластических деформаций растяжения, возпикающих в металле шва при его остывахгии.  [c.199]

Механические свойства металла Н1ва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки, предыдущей и последующей термообработкой. Химический состав лгеталла шва при сварке рассматриваемых сталей незначительно отличается от состава основного металла (табл. 47). Это различие сводится к снижению содержа-  [c.215]

Обеспечение равнопрочности металла шва при дуговых способах сварки низкоуглеродистых и низколегированных нетермо-упрочпенных сталей обычно не вызывает затруднений. Механические свойства металла околошовной зоны зависят от конкретных условий сварки и от вида термообработки стали перед сваркой.  [c.217]

Приведенные в табл. 56 данные показывают, что механические свойства металла швов при сварке порошковыми проволоками находятся примерно на уровне свойств соединений, выполненных электродами типа Э50А но ГОСТ 9467—75. Для сварки ответственных конструкций из низкоуглеродистых и низколегированных сталей можно рекомендовать проволоки ПП-2ДСК и 1Ш-АН4, обеспечивающие хорошие показатели хладноломкости швов.  [c.228]

Легирование металла шва за счет основного металла позволит повысить свойства шва до необходимого уровня. Однако следует помнить, что доля участия основного лтеталла в металле njBa, а значит, и степень легирования зависят от способа сварки, применяемого реишма сварки и других технологических приемов. Поэтому при разработке технологического процесса сварки необходима расчетная проверка ожидаемых механических свойств металла шва для принятых режимов сварки и сварочных материалов (см. гл. V, 6).  [c.248]

Мн 1,5 Сг 2,5 № 0,5 V 1,0 Мо 0,5 Nb. Комбинируя раз-личн].1е легирующие элементы в указанных пределах, можно получить швы с временным сопротивлением до GO—70 кгс/мм в исходном после сварки состоянии и 85—145 кгс/мм после соответствующей термообработки. При сварке низколегированных сталей повышенной прочности не предъявляют требований к идентичности состава металла шва и основного металла основным критерием выбора служит получение гарантированных механических свойств металла шва, что и предусмотрено действующим ГОСТ 9467-75.  [c.249]


Процесс сварки конструкции сопровождается термическим и деформационным воздействиями на свариваемый металл, производимыми при определенных условиях, связанных с технологией получения неразъемного соединения. Данные условия определяют способ сварки, тип и химический состав применяемых материалов (сварочной проволоки. электрода, флюса, газа и т. д.) и зависят от многих факторов, главными из которых являются марка свариваемых сталей и сплавов, их толщина и тип сварной конструкции (балка, ферма, оболочка, детали машин, корпуса раз/шчно-го рода изделий). При этом химический состав и механические свойства металла шва, выполненного, например, сваркой плавлением, в значительной степени отличаются от состава и свойств основного металла, так как на стадии существования сварочной ванны происходит смешивание наплавляемого присадочного металла и расплавляемого основного. Поэтому с точки зрения химического состава и механических свойств принято считать, что в сварном соединении имеются как минимум два различных металла — свариваемый и металл шва. Последний рассматривают как  [c.13]

Электроды покрытые для сварки коррозионно-жаростойких и жаропрочных сталей — мартенситного, мартенситно-ферритного, ферритного, аустеиитно-ферритного и аустенитного классов. Электроды поставляются но ГОСТ 10052—75 31 тина по гарантированному химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла (табл. 42). Полный химический состав наплавленного металла приведен в ГОСТ 10052—75. Приближенные его значения можно определить расшифровкой названий типов электродов, пользуясь данными, нриведенньши на с. 10.  [c.66]

Рели изделие после сварки подвергается термообработке, то испы" танне механических свойств металла шва должно ( роигодиться на образцах, подвергнутых термообработке при тех же условиях и режимах, при которых происходит термообработка изделия.  [c.82]

При окислении стали в первую очередь образуется закись железа. Последняя, будучи растворима в жидкой стали, непосредственно особо вредного влияния на процесс сварки не оказывает. При возрастании содержания закиси железа будут лишь несколько снижаться механические свойства металла шва. Однако повышение концентрации закиси железа вызывает развитие вторичных реакций. Находящиеся в стали примеси (С, Мп, Сг, 81, V, Т1,А1 и др.), упругость диссоциации окислов которых ниже упругости диссоциации закиси железа, начинают взаимодействовать с закисью железа с образованием газов (СО) или шлаковых включений (МпО, 8102, Сг20д и т. п.). Как окись углерода, так и остальные окислы практически в стали не растворяются. Поэто-  [c.356]

Влияние азота. На фиг. 41 показано влияние азота на механические свойства металла шва. Азот при концентрации выше предела растворимости (0,0150/о) при нормальной температуре оказывает влияние на условия равновесия системы и действует в том же направлении, что и углерод. Растворимость азота в альфа-железе быстро возрастает с температурой и достигает (по данным Фри) 0,10/о при 430°С 0,20/0 при 500°С и 0,5% при 580°С (фиг.42). По данным Сефериана растворимость азота при 590° С не превышает 0,13% (фиг. 43). При незащищенной сварке концентрация может достигать 0,20%. Углерод и азот при повышении их концентрации на О,1О/0 в равной мере понижают на 22° С температуру верхней критической точки Лс0. При незначительном объёме сварочной ванны и быстром отводе  [c.303]

В процессе Сварки гранулированный флюс выполняет следующие функции а) защищает расплавленный металл от насыщения азотом и кислородом воздуха б) обеспечивает высокие механические свойства металла шва, для чего флюс должен иметь соответствующий химический состав, быть хорошо раскислён-ным, иметь не более 4% загрязнений и 0,1% влаги в) стабилизирует дугу, для чего гранулометрический состав флюса должен обеспечивать достаточную плотность и газонепроницаемость для изоляции зоны дуги от воздуха г) концентрирует тепло на основном металле в зоне дуги флюс должен быть малотеплопроводным д) обеспечивает нормальное отложение металла и формирование шва е) легирует металл шва и предотвращает выгорание полезных примесей металла и электродной проволоки ж) исключает потери на угар и разбрызгивание.  [c.326]

Известно, что требуемая прочность и пластичность металла шва при сварке сталей повышенной прочности определяются химическим состаном. На основании изучения, анализа и сопоставления химического состава и механических свойств металла швов, полученных при сварке низколегированных сталей как в нашей стране, так и за рубежом, а также рекомендаций по процентному содержанию легирующих элементов в сварных швах, был выбран следующий предварительный химический состав металла шва, который необходимо  [c.121]

Для определения механических свойств металла шва производилась сварка многослойных пакетов толщиной 48—52 мм (размер пластин 4x210x500 мм).  [c.123]


Смотреть страницы где упоминается термин Сварка Механические свойства металла : [c.87]    [c.211]    [c.218]    [c.220]    [c.254]    [c.255]    [c.304]    [c.170]    [c.27]    [c.305]   
Справочник сварщика (1975) -- [ c.0 ]



ПОИСК



Металлов Свойства

Металлы Механические свойства

Металлы активные Сварка наплавленные—Механические свойства

Механические свойства металлов в процессе сварки

Сварк свойства

Сварка Свойства

Сварка дуговая в защитных газах 23 - Механические свойства металла швов

Сварка металла

Схемы под флюсом 139 - Механические свойства металла шва 140 - Режимы контактной сварки 142, 143 - Режимы ЭШС

Формирование структуры и ее влияние на механические свойства металла шва при сварке монтажных стыков неповоротных трубопроводов в условиях низких температур



© 2025 Mash-xxl.info Реклама на сайте