Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отпуск свойства

В отличие от некоторых легированных сталей механические свойства углеродистых (и многих других) сталей не зависят от скорости охлаждения после нагрева до температуры отпуска. Свойства стали после отпуска зависят только от температуры н продолжительности отпуска.  [c.281]

Ход кривых температура отпуска — свойства показывают типичное изменение свойств стали при изменении температуры отпуска прочность с повышением температуры отпуска снижается, а пластичность и вязкость повышаются. Минимум ударной вязкости соответствует отпуску при 250" С, когда в этой стали проявляется отпуск а хрупкость I рода.  [c.388]


После заключительного этапа термомеханической обработки— закалки — сталь приобретает остаточные напряжения, которые могут быть в какой-то степени сняты отпуском. Однако при этом необходимо учитывать одновременное протекание сложных структурных процессов, также существенно влияю щих на прочностные характеристики стали. В частности, при некоторых температурах отпуска свойства стали, подвергнутой НТМО, могут резко ухудшиться.  [c.61]

После закалки н отпуска свойства стальной проволоки зависят oi ев диаметра (табл. 7).  [c.210]

Термическая обработка сварных конструкций. В результате сварки механические свойства металла около сварного шва изменяются. Кроме того, в сварных соединениях образуются сварочные остаточные напряжения и деформации, которые могут отрицательно сказаться на эксплуатационной способности изделия. Поэтому в технологической цепочке предусматривают термическую обработку готового изделия, позволяющую устранить отрицательное влияние сварки. Как правило, это отпуск. Он состоит в нагреве изделия примерно до 650 °С, выдержке при этой температуре и медленном охлаждении. После отпуска свойства металла восстанавливаются, напряжения и деформации снижаются. Однако это очень дорогостоящая операция, поскольку для ее проведения требуются специальное оборудование (печи) и существенные энергозатраты.  [c.368]

В работе [239] изучалось влияние кремния на изменение твердости при холодной прокатке и установлено, что стали типа 22-9 с 2,4% Si и 0,11 % С, обладая большей исходной твердостью, имеют меньшую склонность к приобретению наклепа с увеличением степени деформации, чем сталь 18-8 с 0,09%. В этой же работе изучалось изменение твердости в зависимости от температуры отпуска. Свойства хромоникелевых сталей с кремнием зависят от температуры закалки (рис. 162).  [c.286]

После закалки и отпуска свойства стальной проволоки зависят от ее диаметра (табл. 5.85). Основные достоинства термически упрочненной проволоки — прямолинейность и повышенная релаксационная стойкость, особенно у проволоки  [c.351]

Марка стали Твердость НВ в состоянии поставки (не более) Закалка Отпуск Свойства после окончательной термообработки  [c.388]

После закалки на мартенсит и низкого отпуска свойства легированной стали определяются концентрацией углерода в мартенсите. Чем она выше, тем больше прочность и твердость, ниже ударная вязкость, выше склонность к хрупкому разрушению стали. Максимальное упрочнение достигается уже при 0,4 % С (рис. 9.7). При большей концентрации углерода показатели прочности становятся нестабильными из-за хрупкого разрушения стали, о чем свидетельствуют низкие значения ударной вязкости.  [c.257]


После закалки и отпуска свойства стальной проволоки зависят от ее диаметра (табл. 74).  [c.203]

На второй странице даны дополнительные сведения диаграмма механических свойств стали в зависимости от температуры и времени нагрева при закалке и при отпуске, свойства пластичности стали при различных температурах испытаний и другие данные, позволяющие выбрать режим обработки.  [c.234]

Закалка Отпуск свойства  [c.109]

Стали поставляют в нормализованном состоянии. Поставляют после закалки и отпуска Свойства даны по [151.  [c.214]

На фиг. 160 для низкого отпуска (до 200°) не показаны изменения предела упругости (а ) и ударной вязкости (а , которые могут колебаться иногда в значительной степени, и в общем изображено схематически, что в первой стадии отпуска свойства стали существенно не изменяются.  [c.239]

При среднем отпуске (200—450°) в стадии троостита-отпуска свойства изменяются уже более существенно в сторону снижения твердости и прочности и повышения пластических характеристик (. и а,.).  [c.239]

Н. Т. М. 0 и обычной закалке начинается при одной и той же температуре, и после высокого отпуска свойства получаются одинаковыми. В. Т. М. О значительно понижает порог хладноломкости, повышая сопротивление стали хрупкому разрушению, в связи с измельчением зерна при деформации. В. Т. М. О устраняет склонность стали к отпускной хрупкости П рода и уменьшает склонность к хрупкости I рода (процессы выделения, приводящие к хрупкости стали при отпуске, протекают не только по границам зерен, но и в объеме зерна).  [c.78]

Сплавы, которые при нагреве не претерпевают а - -превра-щения, остаются ферритными. Особенность однофазных ферритных сталей — повышенная склонность к росту зерна. Даже наличие небольшого количества карбидов практически не препятствует росту зерна. Рост зерна, как правило, сопровождается ухудшением свойств. Для сталей с полным или частичным а у-превра-щением, у которых в металле шва или ЗТВ может быть значительное количество мартенсита, рациональной операцией термической обработки является отпуск на температуру в пределах стабильного существования а-фазы. Термическая обработка сварных соединений ферритных сталей без а 7-превращения не может улучшить их свойства. Наоборот, в результате возможного роста зерна даже при высоком отпуске свойства могут ухудшаться.  [c.187]

Описанный выше процесс фиксирования быстрым охлаждением неустойчивого состояния носит название закалки, а последующий процесс постепенного приближения к равновесному состоянию (путем нагрева или длительной выдержки) называется отпуском и старением. Столь разнообразное изменение структуры, достигаемое разной степенью приближения сплава к равновесному состоянию, приводит к разнообразному изменению свойств, чем и обусловлено широкое применение термической обработки, в основе которой заложены процессы неравновесной кристаллизации, в общих чертах описанные выше.  [c.144]

Укрупнение зериа аустенита в стали почти не отражается на статистических характеристиках механических свойств (твердость. сопротивление разрыву, предел текучести, относительное удлинение), ио сильно снижает ударную вязкость, особенно при высокой твердости (отпуск при низкой температуре). Это явление сказывается из-за повышения порога хладноломкости с укрупнением зерна.  [c.241]

Термическая обработка стали 15Х11МФБЛ проведена по режиму нормализации при 1100°С, вьщержка 4—5 ч, отпуск при 740—760 °С, вьщержка 12 ч. Микроструктура представляла собой игольчатый сорбит отпуска. Свойства стали при нормальной температуре удовлетворяли требованиям ТУ по всем характеристикам механических свойств.  [c.80]

Условно первую из них можно определить как область перегретого аустенита, характеризующуюся наличием крупного зерна и высокотемпературной химической микронеоднородности (ВХМН), вторую - аустенита с оптимальной величиной зерна и высокими прочностными свойствами, третью - неполной аустенизации и высокого отпуска. Свойствами участков перефева и высокого отпуска определяется работоспособность сварных соединений этих сталей.  [c.304]


Вследствие пластичности сорбита отпуска свойства улучшаемых сталей незначительно зависят от качества поверхности наличие на поверхности деталей резьбы, отверстий, галтелей, шпоночных канавок незначительно отражается на вьшосливости деталей. Влияние концентраторов на поверхности деталей может бьггь нейтрализовано дополнительным упрочнением поверхностных слоев деталей пластическим деформированием, индукционной закалкой, азотированием. После такой обработки затруднено возникновение микроплас-тических деформаций поверхностных слоев, приводящих к зарождению усталостных трещин. Кроме того, обработка создает в поверхностных слоях остаточные сжимающие напряжения, которые вместе с растягивающими напряжениями под действием внешней нагрузки нейтрализуют или уменьшают действие растягивающих напряжений. Комбинирование термического улучшения с обработкой поверхности деталей обеспечивает им повьшхенную эксплуатационную надежность.  [c.64]

При сварке термически упрочненных сталей на участках рекристаллизации и старения может произойти отпуск металла с образованием структуры сорбита OTny ita и понижением прочностных свойств металла. Технология изготовления сварных конструкций из низколегированных сталей должна предусматривать минимальную возможность появления в зоне термического влияния закалочных структур, способных привести к холодным трещинам, особенно при сварке металла больших трещин. При сварке термически уирочпеп[п,]х сталей следует принимать меры, предупреждающие разупрочнение стали на участке отпуска.  [c.214]

Если сталь перед сваркой подвергают термообработке, но после сварки отпуск певозможен из-за крупных размеров конструкции, то сталь данной марки можпо использовать для изготовления такой конструкции только в том случае, если не предъявляется жестких требований к равнопрочности сварного соеди-иеиия и основного металла в условиях статического нагружения. Для обеспечения свойств сварного соединения, гарантирующих требуемую его работоспособность, критерием необходимой температуры подогрева будет диапазон скоростей охлаждения Аи опт, обеспечивающий необходимый уровень механических свойств в околошовной зоне.  [c.251]

Свойства riapm.ix соединений высокохромыстых сталей, наиболее близкие к свойствам катаного или кованого основного металла, могут быть получены только в тех случаях, если хнмнческнй состав металла ншов подобен свойствам свариваемого металла н после сварки возможна термообработка в виде высокого отпуска. Однако это но всегда выполнимо, особенно в условиях монтажа или ремонта.  [c.264]

Для у [уч1иешш структуры и свойств необходим вмсокий отпуск (рис. 134). Структура после отпуска характеризуется обычно сорбитом отпуска, с тем или иным количеством свободного феррита. Более высокие свойства получатся при почти полном и полном отсутствии в структуре свободного феррита. Однако термообработка не может проводиться вне временной связи со сварочной операцией. Если непосредствепно после сварки остудить изделие до комнатных температур, то образуется структура мартенсита. Последующий ее высокий отпуск при термообработке  [c.268]

Такие же результаты могут быть получены, если при температуре 100—120° С дать металлу в районе сварных соединений отдых (изотермическую выдержку) в течение Ю ч. Тогда изделие может быть охлаждено далее до комнатной температуры и вылеживаться до термообработки в течение достаточтЕО длительного времени. Трещин после такого отдыха не наблюдается, а структура и свойства после термообработки — отпуска получаются оптимальными. Схема термических режимов, обеспечивающих получение сварных соединений без трещин и с благоприятными конечными структурами и свойствами приведена на рис. 135.  [c.269]

Свойства сварных соединений с точки зрения равнопрочтгости с основным металлом зависят не только от режима термообработки после сваркн, но и от режима термообработки изделия перед сваркой. Так, если отпуск после закалки перед сваркой проводили при температурах ниже тех, которые используют при термообработке  [c.269]

Изучение микроструктуры, атомно-кристаллической структуры, физических и механических свойств в отпущенном состоянии и иэменепие этих свойств в процессе отпуска позволили с необходимой до сто верностью установить -последовательность превращения nj)H нагреве закаленной стали.  [c.271]

Описанный в п, 4 этой главы механизм мартенситного превращения — бездиффузи-онность и ориентированность— обусловливает большую зависимость структуры мартенсита от исходной структуры аустенита. Как и сдвиг при пластической деформации, так и мар-тенситная пластина развивается внутри зерна аустенита, разрастаясь от края до края. Значит, чем крупнее зерно аустенита, тем длиннее образующиеся мартенситные пластины. На рис. 223 показано, что в крупном зерне аустенита образовались крупные иглы мартенсита, а в мелких зернах аустенита — мелкие мартенситные иглы, Поскольку пластические свойства и особенно вязкость мартенсита и продуктов его распада (до тех температур отпуска, при которых сохраняется игольчатость микроструктуры) с огрублением структуры сильно ухудшаются (твердость практи-  [c.278]


Смотреть страницы где упоминается термин Отпуск свойства : [c.241]    [c.283]    [c.205]    [c.288]    [c.174]    [c.450]    [c.206]    [c.217]    [c.219]    [c.241]    [c.250]    [c.270]    [c.294]    [c.280]   
Основы металловедения (1988) -- [ c.150 ]



ПОИСК



Изменение механических свойств при отпуске сталей и выбор режима отпуска

Изменение микроструктуры и свойств при отпуске

Изменения свойств накаленной стали при отпуске

Магнитные свойства, изменение при отпуске

Магнитные свойства, изменение при отпуске отпускной хрупкости

Механические свойства в зависимости от температуры отпуска

Механические свойства сердцезины цементуемой стали после закалки и низкого отпуска

Нормализация чугуна Отжиг чугуна Отпуск чугуна Химико-термическая обработка чугуна — Влияние на механические свойства

Отпуск

Отпуск Влияние на структуру и свойства

Отпуск легированной конструкционной Температуры — Влияние на механические свойства

Отпуск легированной конструкционной цементуемой — Температуры — Влияние на механические свойства

Отпуск стали для валков прокатных Режимы и их влияние на механические свойства

Отпуск стали для валков прокатных Режимы на механические свойства

Отпуск углеродистой качественной — Режимы — Влияние на механические свойства 270—276, 288 — Режимы Влияние на механические свойства

Отпуская ось

Подшипниковые для шарико- и роликоподшипников — Виды поставляемого полуфабриката 233 — Марки 230 — Механические свойства 231 — Назначение 230 Прокаливаемость 232 — Режимы закалки 231 — Режимы отжига, нормализации и отпуска 231 — Твердость

Проволока пружинная термически обработанная холоднодеформированная — Материал для изготовления — Отпуск 201 Характеристики механических свойств 199 Прокаливаемое» стали 313 Способы определения

Свойства и структуры сталей при отпуске

Свойства легированных сталей после закалки и отпуска

Свойства стали, изменение при отпуске

Сталь Механические свойства после закалки и низкотемпературного отпуска

Сталь Механические свойства — Влияние температуры отпуска

Тепловые свойства, изменение при отпуск

Термическая обработка для повышения твёрдости и улучшения механических свойств (закалка и отпуск)

Чугун Механические свойства после закалки и отпуска

Чугун белый 49 — Термообработка серый — Механические свойства Влияние температуры отпуска

Чугун серый после отпуска - Механические свойств

Электрические свойства, изменение при отпуске

Электрические свойства, изменение при отпуске отпускной хрупкости



© 2025 Mash-xxl.info Реклама на сайте