Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория пар на плоскости. Момент силы относительно точки

Знаменитый итальянский художник, математик, механик и инженер Леонардо да Винчи занимался исследованиями по теории механизмов (им построен эллиптический токарный станок), изучал трение в машинах, исследовал движение воды в трубах и движение тел по наклонной плоскости. Он первым познал чрезвычайную важность нового понятия механики — момента силы относительно точки. Исследуя равновесие сил, действующих на блок, Леонардо да Винчи установил, что роль плеча силы играет длина перпендикуляра, опущенного из неподвижной точки блока на направление веревки, несущей груз. Равновесие блока возможно только в том случае, если произведения сил на длины соответствующих перпендикуляров будут равны иначе говоря, равновесие блока возможно только при условии, что сумма статических моментов сил относительно точки привеса блока будет равна нулю.  [c.58]


Мы получили теорему Вариньона момент равнодействующей плоской системы сил относительно какой-либо точки, лежащей в этой плоскости, равен алгебраической сумме моментов составляющих относительно той же точки.  [c.77]

Применим эту теорему к решению данной задачи. Определим главный момент внешних сил относительно точки О. Внешними силами являются вес гироскопа и реакция в точке О (рис. 118, в). Главный момент внешних сил относительно точки О направлен перпендикулярно вертикальной плоскости, проходящей через ОС, и равен произведению веса mg на плечо O Sin По теореме Резаля  [c.160]

Теорема Вариньона о моменте равнодействующей. Докажем теперь следующую теорему Вариньона момент равнодействующей плоской системы сходящихся сил относительно некоторой точки, лежащей в плоскости сил, равен алгебраической сумме моментов слагаемых сил относительно той же точки.  [c.66]

Докажем следующую теорему Вариньона о моменте равнодействующей произвольной плоской системы сил если произвольная плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно любой точки, лежащей в плоскости действия данных сил, равен алгебраической сумме моментов всех составляющих сил относительно той же точки.  [c.87]

Действительно, рассматривая ортогональную проекцию на плоскость, нормальную к АВ, мы находим две пересекающиеся силы и их равнодействующую, Нам останется только применить теорему Вариньона ( Статика", 20) к моментам этих сил относительно точки пересечения оси АВ с нормальной к ней плоскостью.  [c.38]

Для приведения плоской произвольной системы сил, как угодно расположенных на плоскости, к одному центру используем следующую теорему силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого действия, переносить параллельно ей самой в любую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, куда сила переносится.  [c.29]

Можно упростить интегрирование дифференциальных уравнений движения, используя теорему об изменении кинетической энергии системы материальных точек в задачах, где главный вектор и главный момент сил, приложенных к твердому телу, постоянны либо зависят от положений точек (угла поворота) твердого тела, а в число данных и неизвестных величин входят масса и момент инерции твердого тела относительно оси, проходящей через его центр инерции перпендикулярно к неподвижной плоскости, силы, приложенные к твердому телу, перемещения точек твердого тела (угловые перемещения), скорости точек твердого тела (угловые скорости) в начале и в конце этих перемещений.  [c.542]


Приближенная теория гироскопических явлений позволяет дать элементарное объяснение движению тяжелого гироскопа (волчка). Сообщим (рис. 387) симметричному однородному телу вращения быстрое вращение вокруг его оси. Допустим, что эта ось, будучи в исследуемом положении вертикальна, может вращаться вокруг неподвижной точки О. Если бы гироскоп пе вращался, то имелось бы неустойчивое положение равновесия. Быстрое вращение сообщает гироскопу свойство устойчивости. В самом деле, дадим оси толчок в направлении, перпендикулярном к плоскости рисунка, приложив к ней в течение весьма малого промежутка времени силу F. Следствием этого, если оставаться в рамках элементарной теории, будет перемещение оси материальной симметрии тела (т. е. вектора К) на некоторый угол в направлении момента силы F относительно неподвижной точки О, т. е. в направлении, перпендикулярном к F (новое положение оси указано на рис. 387 штриховой линией).  [c.371]

Докажем теперь следующую теорему алгебраическая сумма моментов сил пары относительно любой точки, лежащей в плоскости ее действия, не зависит от выбора этой точки и равна моменту пары.  [c.73]

Для пояснения сущности этой теории возьмем вначале абсолютно твердые каток и горизонтальную плоскость, которые не деформируются под действием внешних сил (рис. 188). Из-за отсутствия деформаций нормальная реакция N опоры в точке А соприкосновения тел будет проходить через центр О катка и момент сил сопротивления окажется равным нулю как при качении, так и при относительном покое тел. То же самое отмечается и для упругих тел, но только для статического их состояния.  [c.218]

МОМЕНТ КРУТЯЩИЙ - 1) в теории кручения брусьев — мо.мент внутр. сил, действующих в данном поперечном сечении бруса, взятый относительно центральной оси сечения, перпендикулярной к его плоскости (рис. 1) равен моменту относительно той же оси внешних сил, приложенных к отброшенной части.  [c.310]

Свойства пары. Чтобы лучше пояснить понятие пары сил — одно из важнейших понятий механики, покажем, что момент пары сил равен сумме моментов двух сил пары относительно произвольно взятой точки. Для упрощения доказательства мы предположим сначала, что эта точка находится в плоскости пары, а затем распространим теорему на любую точку.  [c.65]

Приложение к живым существам. Если предыдущую теорему приложить к наблюдателю, стоящему на гладкой горизонтальной плоскости, то можно видеть, что закон площадей имеет место относительно любой точки этой плоскости. В самом деле, внешние силы—-вес и реакции плоскости, действующие на наблюдателя, все вертикальны и сумма их моментов относительно любой вертикальной оси Ог равна нулю следовательно, уравнение (4) имеет место, какова бы ни была точка О на горизонтальной плоскости. Если наблюдатель был  [c.35]

Положение обеих точек Ai и G определяется углом б между горизонтальной проекцией G и осью gx и углом <р, образованным той же проекцией G с осью gz . Движение точки С будет таким же, как если бы эта точка была материальной точкой с массой т, к которой были бы приложены все действующие на сферу внешние силы (вес, нормальная реакция горизонтальной плоскости и реакция точки М на сферу, направленная по МС). Если применить к системе теорему моментов количеств движения относительно оси gzi и теорему кинетической энергии, то получатся два первых интеграла, определяющих 6 и в функции t  [c.229]

Действие пары сил на тело аналогич1-ю действию силы на тело, имеющее неподвижную точку. Здесь мы имеем те же три характеристики величину момента пары сил плоскость действия пары сил и направление вращения тела под действием пары. Поэтому по аналогии с вектором-моментом силы относительно точки в теории статики вводится понятие о векторе-моменте пары сил. Мы его будем обозначать символом М. Этот вектор ( рис 1.8 и плакат 7с) у перпендикулярен плоскости действия пары сил-  [c.16]

Необходимость последнего вывода связана с тем, что при решении задач большей частью имеют дело.с парами сил, расположенными в одной плоскости. Показывать векторы-моменты этих пар перпендикулярными плоскости их действия совервенно нецелесообразно. Поэтому моменты пар, как и моменты сил относительно точек при решении задач на плоскую систему сил, считают в этом случае алгебраическими величинами и с тем же правилом знаков в зависимости от направления вращения тела под действием пары. Только знак моманта силы относительно точки зависит от выбора моментной точки, а знак момента пары сил - не зависит ( вспомните первую теорему о парах ). В заключение остается сказать, что условные изображения пар сил ( см.плакат 7с) на чертежах к задачам могут быть разными. Обычно на чертеже к задаче круговой стрелкой задается направление вращения пары, а в данных к задаче указывается величина крутящего момента пары сил.  [c.19]


Если определение проекции силы на плоскость, пернендркз лярную к оси, затруднительно, то следует разложить силу на составляющие. Затем вместо момента силы относительно оси надо, применив теорему Вариньона, вычислить сумму моментов сил составляющих относительно этой оси.  [c.159]

Допустим, что уравновешенный гироскоп быстро вращается вокруг своей оси ef, на которую действует небольшая внешняя сила, стремящаяся повернуть ее. Эта сила вызовет вращение гироскопа вокруг оси, перпендикулярной к плоскости, определяемой силой и вектором о)[. Пусть угловая скорость этого вращения (02 и момент силы относительно неподвижной точки О М, тогда на основани и уравнения элементарной теории гироскопа У(й2>< 1==М, откуда  [c.196]

Закон площадей — прообраз и частный случай общего закона моментов количеств движения — был установлен впервые Кеплером для движения планет. Кеплер показал, что его второй закон справедлив как для теории Коперника, так и для теорий Птолемея и Тихо Браге. Возможно, что это обстоятельство побудило Ньютона к дальнейшему обобщению. В Началах он доказал и то, что закон площадей для планетных орбит является следствием закона тяготения (планет к Солнцу) в принятой Ньютоном форме, и то, что этот закон справедлив при движении тела под действием любой силы постоянного направления, проходящей через неподвижный центр. Но переход к более общей закономерности не был напрашивающимся, так как момент силы относительно этого центра тождественно равен нулю и в случае, который рассматривал Ньютон. Этот переход был облегчен развитием статики — оперирование моментами (сил) относительно ося или точки как алгебраическими величинами стало там обычным благодаря трудам Вариньона. Все же новое обобщение закона площадей было получено только в работах 40-х годов XVIII в. Все эти работы связаны с задачами о движении тел на движущихся поверхностях. Подобные задачи ставились и в земной, и в небесной механике. Иоганн и Даниил Бернулли начали изучение таких вопросов для случая, когда движущаяся поверхность — наклонная плоскость. Клеро немало содействовал успеху в этой тогда новой области механики своими результатами по теории относительного движения. Вслед за ним Эйлер в большой работе О движениях тел по подвижным поверхностям от-  [c.125]

Основываясь на понятии главного момента системы сил относительно точки на плоскости, докажем теорему о моменте пары сил на плоскости главный момент сил, слставляющит. пару относительно произвольной точки не плоскости действия пары, не зависит от положения этой точки и равен моменту этой пары сил-  [c.54]

Докажем, например, следующую теорему о трех моментах для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы алгебраические суммы моментов всех сил относительно каждой из трех любых точек А, В и С, взятых в плоскости действия этой системы сил и не лежаищх на одной прямой, были равны нулю  [c.94]

Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]

Это понятие не следует смешивать с моментом силы. Понятнб момента силы связано с точкой, относительно которой берется момент. Момент пары определяется только ее силами и плечом ни с какой точкой плоскости эта величина не связана. Теорию пар разработал известный французский механик и геометр Л. Пуансо (1777— 1859).. ",  [c.53]

Найти ошибку в следующих правдоподобных рассуждениях. Материальная точка массы т начинает движение в плоскости yz ш СОСТОЯНИЯ нокоя в однородном ноле тяжести, силовые линии которого параллельны оси Oz. Следовательно, импульс точки рх, сохраняется, т. е. рх = onst. Производная момента имнульса Коу точки относительно оси О у равна нулю, так как единственная внешняя сила — сила тяжести — пересекает ось О у и, следовательно, не создает момента относительно этой оси. Поэтому Коу будет первым интегралом, т. е. Коу = onst нри движении точки. Используя теорему Якоби-Пуассона, получим, что pz = onst, так как рх f Oy) = Pz-Этот вывод находится в очевидном противоречии с уравнением изменения имнульса Pz = mg.  [c.209]

В теории пластин и оболочек — момент внутр. сил, действующих около выбранной точки на едияице длины сечения нормального к срединной поверхности пластины (оболочки). Ири eitom момент сил берется относительно оси, лежащей в плоскости сечения и касательной к срединной поверхности в выбранной точке. Ю. Н. Кузнецов.  [c.310]


G. Herrmann и А. Е. Armenakas [2.1021 (1960), исходя из принципа Гамильтона—Остроградского, вывели пять уравнений движения упругой однородной пластины при конечных прогибах ее срединной поверхности и граничные условия в рамках теории типа Тимошенко. Затем они рассмотрели пластину под действием начальных напряжений с учетом поперечного сдвига и инерции вращения и получили линеаризованные уравнения движения относительно точки срединной поверхности и двух углов сдвига в ортогональных плоскостях. Решение этих уравнений продемонстрировано на задачах определения частоты колебаний при равномерном начальном сжатии, изгибающем моменте, поперечной сдвигающей силе.  [c.167]

Мы уже многократно рассматривали как примеры для объяснения общих понятий и законов механики те движения, причиной которых считают силу тяжести, рассмотрим эти движения подробнее и вначале разъясним, как измеряется сила тяжести. Для этого нам послужит наблюдение колебаний тяжелого тела, которое способно вращаться вокруг горизонтальной оси. Такое приспособление называют маятником, а именно сложным маятником — в противоположность простому маятнику, о котором мы уже говорили. Допустим, что сила тяжести — постоянная ускоряющая сила. Рассмотрим маятник как твердое тело и пренебрежем влиянием воздуха, движением Земли и трением оси вращения тогда мы сможем очень легко вычислить движение такого маятника. Положение последнего в некоторый момент определено одной переменной выберем в качестве ее угол образованный плоскостью, проходящей через ось вращения и центр тяжести маятника, и вертикальной плоскостью, проходящей через ось вращения. Согласно 5 четвертой лекции, имеем теорему площадей относительно плоскости, перпендикулярной к оси вращения, так как связи точек маятника допускают вращение вокруг нее эта теорема дает дифференциальное уравнение для такого угла. Обозначим величину силы тяжести — g, массу маятника—т, расстояние от его центра тяжести до оси вращения—s, момент инерции маятника относительно этой оси — к, таким образом получим дифференциа ное уравнение  [c.69]

Члены, содержащие произведения координат, отбрасываем. Точно так же найдем, что сумма моментов количеств движения относительно оси Оу есть Вд и относительно оси Ог есть Сг. Выше мы доказали такую общую теорему есла сложить все количества движения, как салы, заменить одной силой, проходяи ей через начало координат, и одной парой, то линейный момент этой пары будет постоянен по величине и направлению, есла нет внешних сил, и плоскость этой пары будет так называемая неизменяемая плоскость Лапласа. Назовем этот линейный момент через О так как проекции этого линейного момента б на оси суть Ар, Вд и Сг, то  [c.582]

Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]


Смотреть страницы где упоминается термин Теория пар на плоскости. Момент силы относительно точки : [c.35]    [c.57]    [c.46]    [c.60]    [c.844]    [c.81]    [c.80]    [c.33]    [c.345]   
Смотреть главы в:

Теоретическая механика  -> Теория пар на плоскости. Момент силы относительно точки



ПОИСК



Момент относительно оси

Момент относительно плоскости

Момент относительно точки

Момент силы

Момент силы относительно оси

Момент силы относительно точки

Момент силы относительно точки и момент силы относительно оси

Момент силы относительно точки и относительно оси

Момент силы. Теория пар

Плоскость и точка

Силы в плоскости

Теория моментов

Теория относительности

Теория пар сил на плоскости



© 2025 Mash-xxl.info Реклама на сайте